Tag Archives: falls

Best of EAST #5: Elderly Falls And Vision Problems

Elderly falls have become a huge problem. There isn’t a night that goes by that we don’t admit at least two or three at our trauma center. There are at least a dozen factors that have been identified that are associated with falls, including:

  • Medications
  • Bone and muscle loss
  • Underlying medical conditions
  • Gait problems
  • Throw rugs and other environmental hazards
  • Visual problems

And many more! But let’s focus on that last one. Vision problems can be due to primary disease, such as glaucoma, or from lack of adequate correction of those problems, such as decreased visual acuity.

The group at West Virginia University is presenting a prevention paper next week. They prospectively studied patients older than 60 years who were admitted to their trauma service over a one year period. They wanted to determine the prevalence of undertreated or undiagnosed eye disease in the population, and to find out if using readily available screening tests could detect this and assist in prevention efforts.

A dilated ophthalmic exam was performed and used as the gold standard. The results were compared to a screening app administered by a trauma provider via an iPad (the eyeTests Easy app). This app can be used to test for visual acuity, macular degeneration, near vision, and astigmatism.

Here are the factoids:

  • A total of 96 patients were enrolled, with an average age of 75 and a predominant mechanism of fall in 79%
  • Significant abnormal vision was undiagnosed in 39% of patients and undertreated in 14%
  • The trauma provider app exam was 94% sensitive and 92% specific
  • Correlation was best on pupil exam (86%), visual fields (58%), and the macular degeneration test (52%)
  • A combination of visual fields and the Amsler grid were associated with significant abnormal vision

The authors concluded that unrecognized visual problems are common, and are present in 53% of their elderly trauma admissions. They also state the the trauma provider exam can identify abnormalities in “most cases” and can identify those who should be screened by an ophthalmologist.

My comments: This is an interesting study that compares a simple, app-based screen with a more sophisticated ophthalmology exam. However, it is not clear what “significant abnormal vision (SAV)” really is. The sensitivity and specificity numbers cited depend on this definition. Is it a positive answer to one of the screening questions? Evidence of macular degeneration? If so, how much? I’m sure that a lot of the elderly (and younger) population have some small irregularities in their vision, but what makes it significant?

The study does show that the app can be used as a screening tool due to the congruence with the “gold standard” ophthalmologic exam. And given that vision is one of the major factors associated with falls risk, it may be a cost-effective tool for reducing it.

Here are my questions for the authors and presenter:

  • What is you exact definition of “significant abnormal vision?” This is critical, because it determines the significance of the rest of your results. If the threshold is set too low, you will detect many anomalies but they may not be clinically significant. This definition needs to be as objective as possible so others can duplicate and take advantage of your work.
  • What do you recommend for workflow to incorporate this tool? Who should do it and when? Should the user focus on particular portions of the app (e.g. Amsler and visual fields, acuity)?
  • Describe your future plans for the longitudinal study mentioned in the abstract.

This is very interesting prevention work. I look forward to the nitty gritty details next week!

Reference: Stop the fall: identifying the 50% of geriatric trauma patients with significant vision loss. EAST 2021, Paper 11.

Syncope Workup in Trauma Patients – Updated With CPG

Syncope accounts for 1-2% of all ED visits, and is a factor in some patients with blunt trauma, especially the elderly. If syncope is suspected, a “syncope workup” is frequently ordered. Just what this consists of is poorly defined. Even less understood is how useful the syncope workup really is.

Researchers at Yale retrospectively looked at their experience doing syncope workups in trauma patients. They were interested in seeing what was typically ordered, if it was clinically useful, and if it impacted length of stay.

A total of 14% of trauma patients had syncope as a possible contributor to their injury. The investigators found that the following tests were typically ordered in these patients:

  • Carotid ultrasound (96%)
  • 2D Echo (96%)
  • Cardiac enzymes (81%)
  • Cardiology consult (23%)
  • Neurology consult (11%)
  • EEG (7%)
  • MRI (6%)

Most of this testing was normal. About 3% of cardiac enzymes were abnormal, as were 5% of carotid imaging and 4% of echocardiograms.

Important! Of the patients who underwent an intervention after workup, 69% could have been identified based on history, physical exam, or EKG and did not depend on any of the other diagnostic tests.

Is it possible to determine a subset of this population that may show a higher yield for this screening? Surgeons at Temple University in Philadelphia found that there was little utility in using carotid duplex studies. They did note that patients with a history of heart disease were more likely to have an abnormal EKG, and that an abnormal EKG predicted an abnormal echo. Overall, only patients with a history of significant cardiac comorbidity, older age, and higher ISS had findings requiring intervention.

Bottom line: Don’t just reflexively order a syncope workup when there is a question of this problem. Think about it first, because the majority of these studies are nonproductive. They are not needed routinely in trauma patients with “syncope” as a contributing factor.  Obtain a good cardiac history, and if indicated, order an EKG and go from there. See the practice guideline proposed by the Temple group below. And be sure to include the patients primary doctor in the loop!

References:

  1. Routine or protocol evaluation of trauma patients with suspected syncope is unnecessary. J Trauma 70(2):428-432, 2011.
  2. Syncope workup: Greater yield in select trauma population. Intl J Surg, accepted for publication June 27, 2017.

 

Deer Hunting and Tree Stand Injuries

Deer hunting season is upon us again in Minnesota and Wisconsin, so it’s time to plan to do it safely. Although many people think that hunting injuries are mostly accidental gunshot wounds, that is not the case. The most common hunting injury in deer season is a fall from a tree stand.

Tree stands typically allow a hunter to perch 10 to 30 feet above the ground and wait for game to wander by. They are more frequently used in the South and Midwest, usually for deer hunting. A  study by the Ohio State University Medical Center looked at hunting related injury patterns at two trauma centers.

Half of the patients with hunting-related injuries fell, and 92% of these were tree stand falls. Only 29% were gunshots. And unfortunately, alcohol increases the fall risk, so drink responsibly!

Most newer commercial tree stands are equipped with a safety harness. The problem is that many hunters do not use it. And don’t look for comparative statistics anytime soon. There are no national reporting standards. No matter how experienced you are, always clip in to avoid a nasty fall!

The image on top is a commercial tree stand. The image below is a do-it-yourself tree stand (not recommended). Remember: gravity always wins!

Reference: Tree stands, not guns, are the midwestern hunter’s most dangerous  weapon. Am Surg 76(9):1006-1010, 2010.

Deer Hunting and Tree Stand Injuries

Deer hunting season is upon us again in Minnesota and Wisconsin, so it’s time to plan to do it safely. Although many people think that hunting injuries are mostly accidental gunshot wounds, that is not the case. The most common hunting injury in deer season is a fall from a tree stand.

Tree stands typically allow a hunter to perch 10 to 30 feet above the ground and wait for game to wander by. They are more frequently used in the South and Midwest, usually for deer hunting. A recent study by the Ohio State University Medical Center looked at hunting related injury patterns at two trauma centers.

Half of the patients with hunting-related injuries fell, and 92% of these were tree stand falls. Only 29% were gunshots. And unfortunately, alcohol increases the fall risk, so drink responsibly!

Most newer commercial tree stands are equipped with a safety harness. The problem is that many hunters do not use it. And don’t look for comparative statistics anytime soon. There are no national reporting standards. No matter how experienced you are, always clip in to avoid a nasty fall!

The image on top is a commercial tree stand. The image below is a do-it-yourself tree stand (not recommended). Remember: gravity always wins!

Pneumomediastinum After Falling Down

Finding pneumomediastinum on a chest xray or CT scan always gets one’s attention. However, seeing this condition after a simple fall from standing is very simple to evaluate and manage.

There are 3 potential sources of gas in the mediastinum after trauma:

  • Esophagus
  • Trachea
  • Smaller airways / lung parenchyma

Blunt injury to the esophagus is extremely rare, and probably nonexistent after just falling down. Likewise, a tracheal injury from falling over is unheard of. Both of these injuries are far more common with penetrating trauma.

This leaves the lung and smaller airways within it to consider. They are, by far, the most common sources of pneumomediastinum. The most common pattern is that this injury causes a small pneumothorax, which dissects into the mediastinum over time. On occasion, the leak tracks along the visceral pleura and moves directly to the mediastinum.

Management is simple: a repeat chest xray after 6 hours is needed to show non-progression of any pneumothorax, occult or obvious. This image will usually show that the mediastinal air is diminishing as well. There is no need for the patient to be kept NPO or in bed. Monitor any subjective complaints and if all progresses as expected, they can be discharged after a very brief stay.

Tomorrow: A more interesting (and complicated) case of pneumomediastinum.