Category Archives: Prehospital

Helicopter EMS: The Recommendations

So after two days of pros and cons about helicopter EMS (HEMS), we lead up to this. The American College of Surgeons Committee on Trauma, Emergency Medical System subcommittee, has released a set of guidelines on appropriate use of HEMS. It’s been endorsed by the National Association of EMS Physicians and looks like a lot of thought has gone into it.

Here are the factoids about the HEMS guidelines:

  • Must be integrated with your trauma system
  • Must utilize standardized field triage guidelines that should be applied consistently throughout your trauma system
  • Is blind to the insurance status of the patient
  • Uses a regional dispatch system. Self-launch should never happen.
  • Referring physician to receiving physician conversations must occur when considering transportation mode (air vs ground) for interfacility transfers
  • There must be good online medical direction from a physician
  • Offline medical direction must be based on protocols and policies developed by the trauma system
  • There must be regular PI review of all HEMS transports to ensure compliance
  • HEMS crews must have regular training opportunities
  • A culture of safety must be maintained

Bottom line: We absolutely must take a critical look at our patient transport practices and procedures. To ensure even-handed application of best practices, our state trauma systems are going to have to step up and address this issue so the right patient will get to the right hospital at the right time, safely and cost effectively.

Reference: Appropriate use of Helicopter Emergency Medical Services for transport of trauma patients: Guidelines from the Emergency Medical System Subcommittee, Committee on Trauma, American College of Surgeons. J Trauma 75(4):734-741, 2013.

Helicopter EMS: The Risks

Yesterday, I wrote about the (unclear) benefits of helicopter EMS transports. Today, I’ll cover the risks. The number of medical helicopters in the US has grown dramatically since 2002.

image

As can be expected, the number of mishaps should go up as well.

image

Although it looks like the fatal and injury accidents peaked and then declined, it does not look as good when compared to the rest of the aviation industry. Consequently, being on a helicopter EMS (HEMS) crew has become one of the more dangerous professions.

image

And unfortunately, the numbers have not improved much during the past five years. So what to do? Make it a big PI project. Approach it systematically, analyze the issues, and create some guidelines and protocols for all to follow.

Tomorrow, I’ll review  guidelines for HEMS released by the American College of Surgeons Committee on Trauma.

Reference: Medical helicopter accidents in the United States: a 10 year review. J Trauma 56:1325-1329, 2004.

Helicopter EMS (HEMS): The Benefits?

I’m going to kick off 4 days of information on helicopter emergency medical services (HEMS).

The use of medical helicopters has grown at an astonishing rate in the 10+ years since Medicare got involved with payment for this service. All high level trauma centers have helicopter landing facilities, and many either own or are a part owner in at least one helicopter EMS service (HEMS).

Here’s a state by state breakdown of the number of medical helicopters:

image

It’s gotten to the point where the indication for summoning a HEMS service seems to be the presence of a patient to ride on it! 

A lot of papers have been published in the past 20 years trying to justify the benefits of using these services. As is the usually case when a lot of papers are published on one subject, most of them are not very good. Many studies have been performed to try to justify their use, and most were not successful. The following items have been scrutinized:

  • Interfacility transfers
  • Trauma
  • Pediatric transfers
  • Pediatric trauma
  • Burns
  • OB
  • Neonatal
  • Rural trauma

Most of these papers found little, if any, benefit. The ones that did tended to be published by institutions that owned these services, raising the significant question of bias. The one thing that was always significantly different was the cost. HEMS costs at least 5-10 times more than ground EMS transport.

So the benefits are not very clear. What about the risks? I’ll talk about those in my next post.

Click here to view the interactive state map of medical helicopters. See where your state is with respect to number of ships and services, and how busy they are.

Prehospital Lactate: Ready For Prime Time?

A few months ago, I started to notice a new piece of information coming across on my trauma activation pages: point of care lactate level. I had heard nothing about this prior to these pages, and was curious to know whether this was a new policy/practice, or some study that was in progress. So, of course, I had to do a little bit of reading to find out what was up with that. I’ll share that with you today.

Serum lactate has been used since forever in the inpatient setting, especially in the ICU. It is used as a surrogate for tissue hypoxia and/or metabolic acidosis. A number of studies have found that hypoperfusion is frequently underappreciated, since we tend to use crude vital signs (BP and pulse) which may look normal in early hypovolemia. Serum lactate guided therapy has been shown to improve survival in some studies, and can indicate that resuscitation is proceeding appropriately. Patients who do not show early improvement in their lactate levels are more likely to be refractory to resuscitation, and have higher mortality.

So it would make sense that if prehospital trauma professionals could identify occult tissue hypoperfusion in the field, appropriate resuscitation could start earlier. And nowadays, one can find a point of care device to measure just about anything. Thus, the extra tidbit of information on my trauma pages.

But remember, just because something makes sense doesn’t mean that it actually works. Thus, a group at the University of Birmingham (in the UK) did a systematic review of the literature through 2015, looking specifically at lactate levels obtained in the prehospital setting.

Here are the factoids:

  • Of the 2,415 articles screened, only 7 were suitable for analysis
  • These studies were judged to be of “low” or “very low” quality
  • The methods by which the lactate level were obtained (venous vs capillary), timing, and documentation were highly variable
  • The authors concluded that there is not yet enough data to support point of care lactate in the field

Bottom line: Point of care lactate drawn in the field would seem to be a good idea. Unfortunately, there aren’t any studies yet that are good enough to make this a standard practice. As with any new technique, if there’s no data then you MUST participate in a well designed study so it can be shown, yea or nay, that the practice is a good one. So join up!

Reference: Prehospital point-of-care lactate following trauma: a systematic review. J Trauma 81(4):748-755, 2016.

EMS: How Soon To Extricate The Pinned Patient?

This post was requested by one of my EMS colleagues who is the medical director of a rural EMS agency.

Maybe you watched the movie “Signs” by M. Night Shyamalan, starring Mel Gibson.  Gibson is a preacher whose wife was killed in a tragic accident. She was running and was pinned against a tree by a pickup truck. She is so badly injured that only the pressure of the truck against her is keeping her alive (and together, apparently). Gibson gets to have a few final words before being extricated (and killed).

Could this really happen? Shouldn’t entrapped people be extricated immediately, or do our prehospital providers need to wait until more advanced medical care is present at the scene?

Here’s the movie clip, if you are interested:

YouTube player

Obviously, you will find NO research on anything like this. The real question is, should EMS first responders (if not medically equipped and able) completely extricate an entrapped patient before paramedics or other trauma professionals with advanced skills are present? In other words, can you die just from being unentangled from the wreckage, like Mel Gibson’s wife?

The answer is, possibly. But it might not be for the reasons you think. Remember, this is Hollywood.

There are two killers upon release from entrapment. First, the mechanism by which the patient is pinned may be holding pressure on things that are or want to bleed. These include the pelvic bones, injuries to the torso, groins, and proximal extremities, and possibly even intra-abdominal hemorrhage sources. I’m discounting the chest because if there is enough pressure to tamponade bleeding, it will probably critically impair hemodynamics and ventilation to the point of killing your patient prior to extrication anyway.

The second factor is a crush injury, with release of a bolus of acidic, potassium laden blood from the crushed extremity upon release. This is probably quite rare, since it takes a significant amount of time for the un- or under-perfused extremity to build up enough of these substances to pose a threat. If the patient has been entrapped for less than 30-60 minutes, there is probably little danger to releasing them.

Bottom line: It is probably best to wait for ALS providers to arrive so IVs can be established and post-extrication resuscitation can be planned. This includes having fluid and/or blood products available in case critical bleeding starts once the pressure has been released. And don’t worry about reperfusion injury unless your patient has been trapped for quite a while.

Related posts: