Category Archives: General

Bystander CPR For People Not In Cardiac Arrest

CPR has increased the survival rate of patients suffering cardiac arrest, and early bystander CPR has been shown to double or triple survival. The sad truth is that CPR is not frequently performed by the general public. The American Heart Association has attempted to simplify CPR to the point that even untrained bystanders can administer chest compressions without a pulse check and without rescue breathing.

Bystander CPR

But what happens if that well-intentioned bystander starts CPR in someone who has not arrested? How often does this happen? Can the patient be injured?

The Medical College of Wisconsin reviewed the charts of all patients who received bystander CPR in Milwaukee County over a six year period. There were 672 incidents of bystander CPR. Of those cases, 77 (12%) were not in arrest when assessed by EMS personnel, and the researchers focused on those patients.

EMS response time averaged 5 minutes, and was greater than 10 minutes in only 2 cases. Average patient age was 43(!). The male/female ratio was just about 50:50, and the majority of the incidents took place in the home or residence.

Hospital records were available for further analysis in 72 of the patients. A quarter were sent home, a quarter admitted to a ward bed, and half were admitted to an ICU. Only 12 (17%) had a cardiac-related discharge diagnosis. The next most common discharge diagnoses were near-drowning, respiratory failure and drug overdose. Younger patients (<19) were usually near-drowning victims, and older patients (>54) were most commonly diagnosed with syncope. Five patients did not survive. Only one CPR injury was identified, which was charted as rhabdomyolysis “secondary to having received CPR” (a weak injury diagnosis, in my opinion).

Bottom line: The potential benefit of bystander CPR outweighs the risk of injury or performing it on a victim who is not in arrest. This study shows that, although these patients may not need CPR, they are generally very ill. Given the rapid EMS response times and the younger average age of the victims, no real injuries occurred. The new American Heart Association recommendations are beneficial and should be distributed widely.

Reference: The frequency and consequences of cardiopulmonary resuscitation performed by bystanders on patients who are not in cardiac arrest. Prehosp Emerg Care 15:282-287, 2011.

Print Friendly, PDF & Email

Distracted Driving In Police Officers

A lot has been written about the hazards of distracted driving. Here is some information about the impact of distraction on police officers! A public safety administration class at St. Mary’s University here in Minnesota analyzed 378 crashes involving police cars from 2006 to 2010. The results are intriguing!

Key findings included:

  • Most crashes occurred during non-emergency responses
  • Crashes occurring during emergency responses were the most expensive
  • Distracted driving caused 14% of all crashes
  • Half of distracted driving crashes were due to the use of squad car computers
  • Average insurance claim was $3,000 per crash. However, if the crash was due to distracted driving it doubled to $6,000. If the crash was due to squad car computer distraction the average cost was $10,000!

This study is interesting, but it’s only a partial snapshot of this type of crash in one state. It did not include some of the larger police departments, such as St. Paul and Minneapolis.

Bottom line: It’s safe to assume that distracted driving is just as dangerous to police (and prehospital providers, too). And with growing dependence on advanced technology for law enforcement, this problem is just going to get worse. It is imperative that everything be done to improve safety for our law enforcement colleagues. Potential solutions include training to increase awareness of distractions within the car, simulator testing of driving while using cockpit technology, and ergonomic studies to maximize field of view from within the car.

Related posts:

Print Friendly, PDF & Email

Caution: Identifying Bowel and Mesenteric Injury by CT

CT scan is an invaluable tool for evaluating blunt abdominal trauma. Although it is very good at detecting solid organ injury, it is not so great with intestinal and mesenteric injuries. Older studies have suggested that CT can detect mesenteric injuries if done right, but a more recent study has shown good accuracy with a few imaging tweaks. But wait a minute!

A Taiwanese study looked at a series of prospectively studied victims of blunt abdominal trauma. Patients with abdominal pain or a positive FAST were entrolled (total 106). IV contrast was given, and scans during the arterial, portal, and equilibrium contrast phases were performed using a multidetector scanner. Images were read in a blinded fashion.

A total of 13 of 23 patients who underwent laparotomy were found to have a bowel or mesenteric injury. Five had bowel injury, 4 had mesenteric hemorrhage, and 4 had both. Mesenteric contrast extravasation was seen in 7 patients, and this correlated with mesenteric bleeding at laparotomy.

The authors found that the following signs on CT scan indicated injury:

  • Full or partial thickness change in bowel wall appearance
  • Increased mesenteric density
  • Free fluid without solid organ injury

Bottom line: This study shows that CT scan can detect bowel and mesenteric injury reliably if you scan the patient 3 times! This seems like over-radiation and overkill. A more intelligent way to approach this would be to perform a normal trauma abdominal scan. If a suspicious area of mesenteric or bowel thickening is seen, then a limited rescan through the affected area only for equilibrium phase images may be warranted. If actual contrast extrvasation is seen, no further scanning is needed. A quick trip to the OR is in order.

Reference: Contrast-enhanced multiphasic computed tomography for identifying life-threatening mesenteric hemorrhage and transmural bowel injuries. J Trauma 71(3):543-548, 2011.

Print Friendly, PDF & Email

Management of CSF Otorrhea/Rhinorrhea

The management of CSF leaks after trauma remains somewhat controversial. The literature is sparse, and generally consists of observational studies. However, some general guidelines are supported by large numbers of retrospectively reviewed patients.

  • Ensure that the patient actually has a CSF leak. In most patients, this is obvious because they have clear fluid leaking from ear or nose that was not present preinjury. Here are the options when the diagnosis is less obvious (i.e. serosanguinous drainage):
    • High resolution images of the temporal bones and skull base. If an obvious breach is noted, especially if fluid is seen in the adjacent sinuses, then a CSF leak is extremely likely.
    • Glucose testing. CSF glucose is low compared to serum glucose.
    • Beta 2 transferrin assay. This marker is very specific to CSF. However, the test is expensive and results may take several days to a few weeks to receive. Most leaks will have closed before the results are available, making this a poor test.
  • Place the patient at bed rest with the head elevated. The basic concept is to decrease intracranial pressure, which in turn should decrease the rate of leakage. This same technique is used for management of mild ICP increases after head injury.
  • Consider prophylactic antibiotics carefully. The clinician must balance the likelihood of meningitis with the possibility of selecting resistant bacteria. If the likelihood of contamination is low and the patient is immunocompetent, antibiotics may not be needed.
  • Ear drops are probably not necessary. They may confuse the picture when gauging resolution of the CSF leak.
  • Wait. Most tramatic leaks will close spontaneously within 7-10 days. If it does not, a neurosurgeon or ENT surgeon should be consulted to consider surgical closure.

References:

  1. Brodie HA, Thompson TC. Management of complications from 820 temporal bone fractures. Am J Otol, 1997;18:188-197.
  2. Brodie HA. Prophylactic antibiotics for posttraumatic cerebrospinal fluid fistulas. Arch Otolaryngol Head, Neck Surg. 123:749-752.
Print Friendly, PDF & Email