Scoop And Run VS Stay And Play: Part 3

Scoop and run or stay and play. Is one better that the other? Over my last two posts, I reviewed a couple of papers that were older (6-7 years) and had smaller patient groups. Now let’s look at a more recent one with a larger experience using a state trauma registry.

This one is from the Universities of Pittsburgh and Rochester, and used the Pennsylvania state trauma registry for study material. The authors wanted to really slice and dice the data, postulating that previous studies were not granular enough, such that significant trends could not be seen due to lumping all prehospital time together. They divided prehospital time into three components: response time, scene time, and transport time. To some degree, the first and third components are outside of the prehospital providers’ control.

The records for over 164,000 patients were analyzed. These only included those for patients transported from the scene by EMS, and excluded burns. The prehospital time (PH time) was divided into the three components above. A component was determined to be prolonged if it contributed > 50% of the total PH time.

Here are the factoids:

  • Half of the patients had a prolonged PH time interval (52%)
  • Response time was prolonged in only 2%, scene time was prolonged in 19%, and transport time was longer in 31%
  • Mortality was 21% higher in those with a prolonged scene time component
  • There was no mortality difference in patients with no prolonged time components, or those with prolonged response or transport times
  • These patterns held for both blunt and penetrating injury
  • Extrication and intubation were common reasons for prolonged scene time. Extrication added an average of 4.5 minutes, and intubation 6.5 minutes.
  • Mortality was increased with prehospital intubation, but this effect lessened in severe TBI
  • Increasing experience with extrication and intubation appeared to decrease the mortality from the increased scene time they caused

Bottom line: This paper suggests that the dichotomy of “scoop and run” vs “stay and play” may be too crude, and that a more nuanced approach should be considered. In plain English, the optimal management lies somewhere in between these polar opposites. Actual on scene time appears to be the key interval. EMS providers need to be aware of scene time relative to response and transport times. Patients with specific injury patterns that benefit from short scene times (hypotension, flail, penetrating injury) can quickly be identified and care expedited. Increased scene time due extrication cannot be avoided, but prehospital intubation needs to be considered carefully due to the potential to increase mortality in select patients. 

Reference: Not all prehospital time is equal: Influence of scene time on mortality. J Trauma 81(1):93-100, 2016.

Scoop And Run VS Stay And Play: Part 2

In my last post, we looked at an older study that kind of examined the scoop and run vs stay and play debate.  Let’s move forward in time a little bit, and evaluate the two options in a penetrating trauma model.

This one is from the anesthesia and intensive care departments at the university hospital in Copenhagen. The authors prospectively captured information on 462 penetrating trauma victims, then looked up their 30 day survival status in a national administrative database.

Here are the factoids:

  • Only 95% of patient records (446) were available for 30 day review (better that in the US!)
  • Of those, 40 were dead (9%)
  • Using raw statistics, there seemed to be a significant increase in mortality if the prehospital crew was on scene more than 20 minutes
  • However, when corrected for age, sex, injury pattern, etc. there was no significant difference in survival for short vs longer scene stays
  • Multivariate analysis identified the number of procedures performed at the scene as a significant predictor of mortality, regardless of time

Bottom line: We still can’t seem to show a difference in patients who are tossed in the back of the squad and driven vs those who have IVs, immobilization, and other things done to begin resuscitation and increase safety prior to transport! However, the bit about number of procedures is intriguing. Is this just another surrogate for time? Are there unrecognized complications from them that affect survival?

Next time, I’ll look at a recent publication from the US that gives us yet another angle on this question.

Reference: On-scene time and outcome after penetrating trauma: an observational study. Emerg Med J 28(9):87-801, 2011.

Scoop And Run VS Stay And Play: Evolution

I previously published a series on the concept of scoop and run vs stay and play. For those new to the concept, it involves decision-making by prehospital providers to throw the patient into the ambulance and book it to the trauma center, or perform potentially life-saving interventions on scene first.

I’m going to repost the series first to give you a historical perspective on this idea. Then I’ll finish up with the results of a recent multi-center trial conducted by EAST to provide the finishing touch.

For trauma patients time is the enemy and there are two different flavors of scoop and run vs stay and play. The more commonly understood one has to do with treating on scene (or not) before going to a high level (I or II) trauma center. The other flavor that rural prehospital providers face is, do I take the patient to a nearby hospital that is not a high level trauma center (III or IV) to stay and play, or do I scoop and run to the nearest Level I or II center which may be farther away?

Here are the factoids:

  • Admissions to a group of 8 trauma centers were analyzed over a 3 year period, and included a total of 1112 patients
  • A total of 76% were taken directly to a Level I trauma center (scoop and run, 76%); 24% were transferred to the trauma center from another hospital (stay and play?).
  • Patients who were taken to a non-trauma center first received 3 times more IV crystalloid, 12 times more blood, and were nearly 4 times more likely to die!

Obviously, the cause of this increased mortality cannot be determined from the data. The authors speculated that patients may undergo more aggressive resuscitation with crystalloid and blood at the outside hospital making them look better than they really are, and then they die. Alternatively, they may have been under-resuscitated at the outside hospital, making it more difficult to ensure survival at the trauma center.

Bottom line: This is an interesting paper, but it’s kind of a mutant. When I think about the true stay and play concent, I’m really thinking about delays going to a high-level trauma center, not a lower level trauma hospital first! And the authors never really define a “nontrauma hospital.” Does a Level III or IV center count? How did patients who stayed at the outside hospital do?

Obviously, a lot of work needs to be done to add detail to this particular paper. In my next post, I’ll look at this concept as it applies to patients with penetrating injury.

Reference: Scoop and run to the trauma center or stay and play at the local hospital: hospital transfer’s effect on mortality. J Trauma 69(3):595-601, 2010.

TXA Hesitancy: Part II

In my last post, I reviewed a huge systematic review and meta-analysis of the use of tranexamic acid (TXA)  by all medical disciplines using it. There were more than 125,000 cases included and showed the incidence of thrombotic complications in TXA vs non-TXA patients was exactly the same at about 2%.

Our orthopedic surgery colleagues have been using TXA to reduce bleeding in their cases for decades. There is nothing close to the degree of “TXA hesitancy” in orthopedic surgeons than I see in surgical practices across trauma centers. What do the orthopods know that we don’t?

Trauma orthopedic groups in Malta and the UK published a paper just this month in which they performed a systematic review and meta-analysis of the use of TXA in hip fracture surgery. They focused on randomized, controlled trials published after 2010. A standard approach was used in the analysis, which looked specifically at the impact of IV TXA on transfusion requirements in surgery. Only adults were studied, and eligible studies compared TXA with a placebo, or TXA with no TXA.

Here are the factoids:

  • Out of 85 studies initially identified, only 13 met all criteria
  • Across these trials, a total of 1194 patients were enrolled
  • The need for blood transfusion was reduced by more than 50% when the transfusion threshold was Hgb 8g/dl, which was highly statistically significant
  • When a higher transfusion threshold was used (between 8-10 g/dl Hbg) the risk reduction was only 23% which was not significant
  • The incidence of thrombotic events was identical for TXA and no-TXA groups

Bottom line: This paper presents more high-quality evidence that the use of TXA in surgically induced injury (hip fracture repair) significantly reduces the need for transfusion in the group with the most blood loss. 

However, as with any meta-analysis the results are only as good as the quality of the individual papers. There were differences in how the TXA was given. It was also not possible to separate out results from the various types of hip surgery performed. And obviously, these are not major, multi-trauma patients.

Most TXA hesitant surgeons are either concerned with the efficacy of TXA, or the potential risks. This paper shows that, overall, TXA is effect in these patients despite the mix of doses and timing of delivery. And it clearly shows that the risk for thrombotic complications was identical to that of not giving it.

We have a cheap, effective tool to reduce the need for blood transfusion (read “blood loss”) in trauma patients that has a totally neutral risk profile for thrombosis. We all need to ask ourselves, “why are we not using it?”

Reference: The Use of Tranexamic Acid in Hip Fracture Surgery — A
Systematic Review and Meta-analysis . J Orthop Trauma, 36(2):e442-3448, 2022.

TXA Hesitancy: Part I

I’ve visited several hundred trauma centers over the past 25 years, and recently I’ve begun to appreciate that there are two tribes when it comes to the use of tranexamic acid: the TXA believers and the TXA hesitant.

There have been a number of large studies that seem to suggest a benefit with respect to survival from major hemorrhage, particularly if given soon after injury (CRASH-2, MATTERs). This drug is dirt cheap and has been around a long time, so it has a clearly defined risk profile.

However, many of those hesitant to use it point to the possibility of thromboembolic events that have been sporadically reported. Several years ago, I did my own literature review and found that the number of thrombotic events from TXA was nearly identical to that of transfusing plasma.

JAMA Surgery published a large systematic review, meta-analysis, and meta-regression last year that sought to examine the association between thromboembolic events (TE) in patients of any age and involving all medical disciplines, not just trauma.

The anesthesia group at the University Hospital Frankfurt in German did a systematic search of the Cochrane Central Register of Controlled Trials, as well as MEDLINE, for randomized controlled trials involving TXA. They covered all published studies through December 2020.

The authors adhered to standard guidelines for conducting reviews and meta-analysis (PRISMA). They specifically searched for outcomes involving TEs, such as venous thromboembolism, myocardial infarction or ischemia, limb ischemia, mesenteric thrombosis, and hepatic artery thrombosis. They also tallied the overall mortality, bleeding mortality, and non-bleeding mortality.

Here are the factoids:

  • A total of 216 eligible trials were identified that included over 125,000 patients (!)
  • Total TEs in the TXA group were 1,020 (2.1%) vs 900 (2.0%) in the control group
  • Studies at lowest risk for selection bias showed similar results

Bottom line: The authors concluded that IV TXA, irrespective of the dose, does not increase the risk of thromboembolic events. Period.

In my next post I’ll describe an even more recent systematic review and meta-analysis in orthopedic patients. Our orthopedic colleagues have been using this drug successfully for hip surgery for decades. Let’s see what they think.

Reference: Association of Intravenous Tranexamic Acid With Thromboembolic Events and Mortality A Systematic Review, Meta-analysis, and Meta-regression. JAMA Surgery 156(6):3210884, 2021.

Home of the Trauma Professional's Blog

Do you want to get a daily email every time there’s a new post? See what I’m up to.

Click here to get details and subscribe!

[accua-form fid=”1″]

[mc4wp_form id=”2023″]