All posts by The Trauma Pro

Delayed Hemothorax In Older Adults: Real Or Not?

I came across an interesting paper in the Journal of Trauma & Acute Care Surgery Open recently. I always read these articles a bit more critically, though, because the peer review process just doesn’t feel quite the same to me as the more traditional journal process. But maybe it’s just me.

In this paper, the authors decided to look at the incidence of delayed hemothorax because “emerging evidence suggests HTX in older adults with rib fractures may experience subtle hemothoraces that progress in a delayed fashion over several days.” They cite two references to back up this rationale.

They retrospectively reviewed records from two busy US Level I trauma centers for adults age 50 or older who were diagnosed with delayed hemothorax (dHTX). Delayed was defined as 48 hours or more after initial chest CT showed either a minimal or trace HTX. The authors went on to analyze the characteristics and demographics of the patients involved.

Here are the factoids:

  • A total of 14 older adults experienced dHTX after rib fractures, an overall incidence of 1.3% (!)
  • About half were diagnosed during the initial hospitalization for the fractures
  • All patients had multiple fractures, with an average of 6 consecutive ones; four had a flail chest
  • One third progressed from a trace HTX, two thirds had a completely negative initial chest CT
  • Only one third were taking anticoagulants or anti-platelet agents
  • Patients with multiple fractures, posteriorly located, and displaced were most likely to develop dHTX

The authors concluded that “delayed progression and delayed development of HTX among older adults with rib fractures require wider recognition.”

Bottom line: Really? First, I looked at the papers cited by the authors as the rationale for doing this study. They each found dHTX in about 10% of patients, but their definition was very broad: any fluid visible on upright chest x-ray. Furthermore, the patients were not really “older” either. Average age was around 50. 

So I’m not sure yet whether this is a problem, especially with the low incidence of 1.3%. This study doesn’t come right out and state how many patients they reviewed to find their 14, but it can be calculated to be 14 / 1.3% = 1,177. This incidence is only one tenth of that found in the two studies cited. Seems relatively uncommon, and half were discovered while the patients were still in the hospital. Thus only 0.65% sought readmission for chest discomfort or difficulty breathing.

This study required chest CT for rib fracture diagnosis. Is all that radiation (and possibly contrast) really necessary? And did these patients get another chest CT to delineate the pathology? More radiation?

Overall, this paper was not very helpful to me. Yes, I have seen patients come back days or weeks later with a hemothorax that was not seen during their first visit. It’s just that this study raises many more questions that should have been easily answered in the discussion. But they weren’t.

Given that only about a half of a percent of rib fracture patients develop delayed hemothorax after discharge, it is probably prudent to provide information to the patient recommending they see their practitioner if they develop any symptoms days or weeks later.  And a simple chest x-ray should do.

Reference: Complication to consider: delayed traumatic hemothorax in older adults. Trauma Surgery & Acute Care Open 2021;6:e000626. doi: 10.1136/tsaco-2020-000626.

What Is The Curbside Consult? And The ELEVENTH Law of Trauma!

Surgeons, I’m sure you’ve had an experience something like this at some point:

You happen to be wandering through the emergency department and one of your Emergency Medicine colleagues approaches you and says, “Hey, I ‘ve got this patient I’m seeing that I just want to run by you…”

How should you deal with this? They want a quick tidbit of information to help them decide what to do with the patient. Can they send them home, or should they “formally” consult you?

It’s important to look at the pros and cons of this practice. First the pros:

  • It’s direct. You’re right there. No phone calls, no paging.
  • It’s quick. Just a quick description  of the problem, and a prompt answer. Then everyone can get on with their business.

But then there are the cons:

  • Situational accuracy. The consultee has not seen the patient, so the information they have been given was filtered through the consulter. Any number of cognitive biases are possible, so the real story may not be exactly as it seems.
  • Interpretation of the recommendation. Other cognitive biases are also possible as the consulter acts on and implements the recommendations of the consulter. Have they really been followed?
  • Lack of documentation. This is the biggest problem with a curbside consult. The consultee may act without documenting the source of the recommendation. Or, they may document that they spoke with Dr. Consultee. In either case, one or the other may be hung out to dry, so to speak.

Consider what happens if there is a complication in the care of that patient. There is no way to really determine what was said during that conversation a week or two years later. It boils down to recollections and may end up as a he said … she said situation. And in the worst case scenario, if such a case were to enter the medicolegal arena, there is no official record that any recommendation was made or followed. It’s a very easy case for the plaintiff’s attorney to prevail.

So this leads to my new Eleventh Law of Trauma:

Work not documented is work not done

Bottom line: There is no such thing as a curbside consult! The consultee should say, “I’d better take a look at this patient, why don’t you officially consult me?”

In doing this, the consulter gets to use their own clinical and cognitive skills, and thus render a real opinion based on first hand experience. The consultee gets the most accurate recommendations possible, and they are noted in the record so there is no room for misinterpretation. And finally, there is good documentation from both that will stand up in a court of law if needed.

In The Next Trauma MedEd Newsletter: Some Potpourri!

Finally! It’s been a while, and now it’s time to put pen to paper once again. Fingers to keyboard? Whatever!

The April issue of Trauma MedEd will be sent out to subscribers on Friday, and will provide some random interesting topics.

This issue is being released to subscribers at 9am Central time on Friday. If you sign up any time before then, you will receive it, too. Otherwise, you’ll have to wait until it goes out to the general public at the end of next week. Click this link right away to sign up now and/or download back issues.

In this issue, learn about:

  • Who’s Better At Invasive Procedures? Advanced care providers or residents?
  • How Many Salt Tabs In A Liter Of Saline?
  • Mainstem Intubation In Pediatric Patients
  •    And How To Avoid It!
  • Giving TXA Via An Intraosseous Line?

As always, this month’s issue will go to all of my subscribers first. If you are not yet one of them, click this link right away to sign up now and/or download back issues.

Detecting Rib Fractures In The Elderly

It’s well known that our elders do less well than younger folks after injury. The number of complications is higher, there tends to be more loss of independence during recovery, and mortality is increased. This is not only true of high energy trauma like car crashes, but also much lower energy events such as a fall from standing.

Rib fractures are common after falls in the elderly and contribute to significant morbidity if not treated adequately. Traditionally, they are identified through a combination of physical exam and chest x-ray. Unfortunately, only half of rib fractures are visible on x-ray. It falls to the physical exam to detect the rest.

A group at Beth Israel Hospital in Boston explored the utility of using chest CT in an attempt to determine if this would result in more appropriate and cost-efficient care in the elderly. They performed a retrospective study of 3 years of their own data on patients aged 65 or more presenting after a mechanical fall and receiving a rib fracture diagnosis. Imaging was ordered at the discretion of the physician. A total of 330 patients were elderly, fell, and had both chest x-ray and chest CT obtained. This was a very elderly group, with a mean age of 84 years!

Here are the factoids:

  • Rib fractures were seen on chest x-ray in 40 patients (12%) and on CT in an additional 56 ; 234 patients had no fractures on either
  • When fractures were seen on both studies, CT identified a median of 2 more fractures than chest x-ray
  • Patients with fractures not seen on chest x-ray were admitted significantly more often than those without fractures (91% vs 78%)
  • Mortality, admission to ICU, ICU length of stay, and hospital length of stay were not different if fractures were seen only on CT
  • CT scan identified new issues or clarified diagnoses suggested by chest x-ray in 14 cases, including one malignancy
  • Rib detail images were obtained in 13 patients and proved to be better than chest x-ray, but not quite as good as CT scan

Conclusion: use of CT for rib fracture diagnosis resulted in a few more admissions, but no change in hospital resource utilization, complications, or mortality.

Bottom line: Hmm…, read the paper closely. The authors conclude that more patients with CT-only identified rib fractures are admitted. But compared to what? Unfortunately, patients without rib fractures on CT. What about comparing to patients who had fractures seen on chest x-ray too? If that number is the same, then of what additional use is CT? Identifying a few incidentalomas?

Given that there is no change in the usual outcome measures listed here, it doesn’t seem like there is any additional benefit to adding CT. And I can see a lot of downsides: cost, radiation, and possible exposure to IV contrast. In my mind, there is still nothing that beats a good physical exam and a chest x-ray. Skip the CT scan. And don’t even think about ordering rib detail images! That’s so 1990s. And even if no rib fractures are seen on imaging, physical exam is the prime determinant for admitting your patient for aggressive pain management and pulmonary toilet.

Reference: Chest CT imaging utility for radiographically occult rib fractures in elderly fall-injured patients. J Trauma 86(5):838-843, 2019.

Arms Up or Arms Down In Torso CT Scans?

CT scan is a valuable tool for initial screening and diagnosis of trauma patients. However, more attention is being paid to radiation exposure and dosing. Besides selecting patients carefully and striving for ALARA radiation dosing (as low as reasonably achievable) by adjusting technique, what else can be done? Obviously, shielding parts of the body that do not need imaging is simple and effective. But what about simply changing body position?

One simple item to consider is arm positioning in torso scanning. There are no consistent recommendations for use in trauma scanning. Patients with arm and shoulder injuries generally keep the affected upper extremity at their side. Radiologists prefer to have the arms up if possible to reduce scatter and provide clearer imaging.

Radiation physics research has examined arm positioning and its effect on radiation dose. A retrospective review of 690 patients used dose information computed by the CT software and displayed on the console. Radiation exposure was estimated using this data and was stratified by arm positioning. Even though there are some issues with study design, the results were impressive.

The dose results were as follows:

  • Both arms up: 19.2 mSv (p<0.0000001)
  • Left arm up: 22.5 mSv
  • Right arm up: 23.5 mSv
  • Arms down: 24.7 mSv

Bottom line: Do everything you can to reduce radiation exposure:

  1. Be selective with your imaging. Do you really need it?
  2. Work with your radiologists and physicists to use techniques that reduce dose yet retain image quality
  3. Shield everything that’s not being imaged.
  4. Think hard about getting CT scans in children
  5. Raise both arms up during torso scanning unless injuries preclude it.

Reference: Influence of arm positioning on radiation dose for whole body computed tomography in trauma patients. J Trauma 70(4):900-905, 2011.