Is Applying Or Removing That Cervical Collar Dangerous?

Cervical collars are applied to blunt trauma patients all the time. And most of the time, the neck is fine. It’s just those few patients that have fracture or ligamentous injury that really need it. 

I’ve previously written about how good some of the various types of immobilization are at limiting movement (click here). But what happens when you are actually putting them on or taking them off? Could there be dangerous amounts of movement then?

Several orthopaedics departments studied this issue using an electromagnetic motion detector on “fresh, lightly embalmed cadavers” (!) to determine how much movement occurred when applying and removing 1- and 2-piece collars. Specifically, they used an Aspen 2-piece collar, and an Ambu 1-piece. They were able to measure flexion/extension, rotation and lateral bending.

There were no significant differences in rotation (2 degrees) and lateral bending (3 degrees) when applying either collar type or removing them (both about 1 degree). There was a significant difference (of 0.8 degrees) in flexion/extension between the two types (2-piece flexed more). Movement was similarly small and not significantly different in either collar when removing them.

Bottom line: Movement in any plane is less than 3-4 degrees with either a 1-piece or 2-piece collar. This is probably not clinically significant at all. Just look at my related post below, which showed that once your patient is in the rigid collar, they can still flex (8 degrees), rotate (2 degrees) and move laterally (18 degrees) quite a bit! So be careful when using any collar, but don’t worry about doing damage if you use it correctly.

Related post:

Reference: Motion generated in the unstable cervical spine during the application and removal of cervical immobilization collars. J Trauma 72(6):1609-1613, 2012.

Extubating Trauma Patients In The ED

Many patients are intubated in the emergency department who need brief control of their airway or behavior. In some cases, the condition requiring intubation resolves while they are still in the department. Most of the time these patients are admitted, typically to an ICU bed, for extubation. This is expensive and uses valuable resources. Is it possible to safely extubate these patients and possibly send them home?

Maryland Shock Trauma and Mount Sinai Medical Center looked at their experience in extubating selected patients in the ED. They looked at a series of 50 patients who were intubated for combativeness, sedation, or seizures. A specific protocol was followed to gauge whether or not extubation should be attempted.

None of the patients who were extubated per protocol required unplanned reintubation. One patient underwent planned reintubation when taken to the OR for an orthopedic procedure. 16% of patients were able to be discharged home from the ED.

Bottom line: A subset of patients who are intubated in the emergency department can be extubated once the inciting factor has resolved. These factors include sedation for painful procedures and combativeness. Following this protocol can reduce admission rates and reduce the use of scarce intensive care unit resources.

Click here to download a copy of the ED extubation protocol.

Related post: Trauma 20 years ago: ED intubation for head injury

Reference: Trauma patients can be safely extubated in the emergency department. J Emerg Med 40(2):235-239, 2011.

NOTE: The EMCrit blog, written by Scott Weingart, covered this topic in November 2010. He is the first author on the paper and has created a nice podcast on the topic. You can find his blog here, and you can download the podcast here.

The 30:60 Rule For Interventional Radiology

Interventional radiology (IR) can be a very helpful adjunct to the evaluation and management of trauma patients. I’m going to talk specifically about using it for blunt trauma today because the use in penetrating trauma can be a little more nuanced.

For blunt trauma, IR is used primarily to stop bleeding. In a smaller subset of patients, this tool is used to evaluate pulse deficits. There are two basic principles that apply in either case, and I’ve wrapped them up into a single concept: the 30:60 rule for interventional radiology. 

Of course, the second law of trauma still applies: hypotensive patients cannot leave the ED to go anywhere but the OR. Once you make sure you are not violating that one, you can start the process of going to IR.

The two portions of the rule are times: the time for the IR team to arrive to start the evaluation, and the maximum time allowed for them to succeed, hence the 30:60 numbers.

The maximum acceptable time for the patient to wait until the IR team is ready for them is typically 30 minutes. US trauma center verification requires a reasonable arrival time frame, and the vast majority of hospitals have a 30 minute expectation if the team is not already in place. This response time needs to be monitored by the trauma performance improvement program (PI) and addressed if it ever exceeds the limit.

The second number is the maximum time the radiologist is given to be successful. Like other physicians, radiologists like to do a good job and finish the work they start. If they find a particularly tortuous splenic artery to navigate, they will persist at trying to get through it in order to do a selective embolization and kill the smallest piece of spleen possible. Unfortunately, this takes time and radiation (lots). And a bleeding patient is running out of time.

The good thing is that there are surgical alternatives to most of the tasks the radiologist is working on. True, some are much more difficult surgically, like managing a shattered liver or dealing with a bleeding pelvis. In those cases, I may let the interventionalist work a little longer while I keep up with blood transfusions and monitor patient status.

Bottom line:

  • Expect a 30 minute response time from the IR team
  • Let the radiologist know they have about 60 minutes to succeed. If it looks like they can’t make that, have them go to plan B (e.g. main splenic artery embolization instead of selective)
  • Make sure an experienced trauma physician is watching the patient for decompensation and is managing fluids and blood products (no pressors!)
  • If the patient decompensates at any point, they are done in IR and must proceed to OR

Operative Management Of TBI By Non-Neurosurgeons?

In the US, Level I and II trauma centers are required to have around the clock neurosurgical coverage. This becomes problematic, especially in more rural areas, because they are a scarce resource. This problem is not limited to the States, and other countries have learned how to deal with it in their own ways.

A recent paper from Austria and the Slovak Republic looked at how this issue is dealt with at some centers in central Europe, and the impact of having neurosurgical procedures performed by trauma surgeons. The researchers looked at various databases maintained by 10 tertiary care hospitals in a retrospective fashion. Patients were included if they had a GCS of 8 or less and they survived to ICU admission. Some centers had neurosurgeons available, while others had only trauma surgeons. Procedures were performed by the appropriate type of surgeon in each center.

A total of 743 patients were evaluated, and about 68% underwent a neurosurgical procedure while 6% had an ICP monitor inserted. About a quarter of these patients had other significant associated injuries and were excluded, since the authors were interested in measuring effects in TBI patients. This left 311 patients, of whom 61% were treated by neurosurgeons and the remainder by trauma surgeons.

Here are some of the interesting findings:

  • Prehospital airway was provided more frequently in the neurosurgical treatment group, which should potentially improve outcome
  • ED management time and time to OR was shorter in the neurosurgical treatment group, which should also potentially improve outcome
  • However, there was no difference in ICU survival, hospital survival, or long-term outcome!

Bottom line: This is an interesting but poorly constructed study. Don’t believe the results! Other researchers’ leftover databases were used, and some databases were excluded because “quality of care was not comparable” to other centers. This is the worst kind of selection bias! If you believe the results, then you would also have to believe that airway control and prompt operative management don’t really matter much. The paucity of neurosurgeons who are interested in trauma care is pervasive. However, we still need to look for solutions to this problem and they remain a very valuable member of the trauma team.

Reference: Outcome of patients with severe brain trauma who were treated either by neurosurgeons or by trauma surgeons. J Trauma 72(5):1263-1270, 2012.

Predicting Escalation Of Domestic Violence

Most trauma professionals will have the opportunity to provide care for victims of domestic violence some time during their career. We are on the front lines and can unfortunately see the damage first hand. From time to time, the abuse escalates to a point where the woman (typically) is murdered. Is there a way to predict this fatal progression so it can be avoided?

The answer is yes! The Danger Assessment Tool (DAT) was developed 25 years ago and has been validated. Even though the instrument is old, it remains extremely helpful. The unfortunate thing is that at least half of the women involved do not recognize the grave peril they are in.

Some key points that were uncovered in the development of the DAT:

  • If a gun or other weapon is used to threaten, the risk of being murdered increases 20-fold
  • If there is merely a gun in the house, the risk of murder increases 6 times
  • If the abuser threatens murder, the risk of being killed increases 15-fold
  • Other indications of increased risk of death include heavy substance abuse, extreme jealousy, stepchild in the household, attempts to choke and forced sex

Bottom line: Domestic violence is criminal. We must go beyond the physical treatment and make sure these individuals are safe. Use the Danger Assessment Tool routinely to help identify women most at risk of losing their lives and bring all your social services resources to bear to keep them safe!

Download: Danger Assessment Tool

References:

  • Campbell, Jacquelyn C., Assessing Dangerousness: Violence by Sexual Offenders, Batterers, and Child Abusers, Newbury Park, CA: Sage Publications, 1995.
  • Campbell, Jacquelyn C. , Phyllis W. Sharps, and Nancy Glass, “Risk Assessment for Intimate Partner Violence,” in Clinical Assessment of Dangerousness: Empirical Contributions, ed. Georges-Franck Pinard and Linda Pagani, New York: Cambridge University Press, 2000: 136–157.