Tag Archives: FFP

What’s The INR Of Fresh Frozen Plasma?

So what’s the INR of FFP? Or stated another way, what’s the lowest you can correct a patient’s INR using infusions of fresh frozen plasma?

One of the mainstays of correcting coagulopathy, either from hemorrhage or due to medication like warfarin, is transfusion of FFP. Frequently, clinicians will write orders to administer FFP until a certain INR is achieved. What is a reaonable INR?

A “normal” INR is 1.0, plus or minus about 0.2, depending on your laboratory. However, two separate studies have shown that transfusion of FFP will not reliably decrease the INR below about 1.7. 

Bottom line: The answer to the question is about 1.6. If any clinician orders FFP transfusions with a goal INR below this, it probably won’t happen. And since transfusions of any product have risks, my “juice to squeeze” ratio of risk vs benefit begins to fail at an INR of 1.6. Below that point, the patient needs a normal temperature and good perfusion to drop their INR further.

References:

  • Toward rational fresh frozen plasma transfusion: the effect of plasma transfusion on coagulation test results. Am J Clin Pathol 126(1):133-139, 2006.
  • Effect of fresh frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities. Transfusion 46(8):1279-1285, 2006.

Q&A: Prothrombin Complex Concentrate

An anonymous user recently asked about decision-making with regard to anticoagulation reversal. Specifically, they were interested in using prothrombin complex concentrate (PCC) vs activated Factor VII (FVIIa). I’ve done a little homework on this question, and am going to include some information on the use of fresh frozen plasma (FFP), too.

Unfortunately, there’s not a lot of good data out there comparing the three. Enthusiasm for using FVIIa is waning because it is extremely expensive and the risk/benefit ratio is becoming clearer with time (more risk and less benefit than originally thought). PCC is attractive because it provides most of the same coagulation factors as FFP, but with far less volume. However, it is very expensive, too.

What to do? One of the best papers out there comes from the UK, where they looked at the cost effectiveness of PCC vs FFP in warfarin reversal. They reviewed a year’s worth of National Health Service patients from the standpoint of what it costs to gain a year of life after hemorrhage. They found that the cost was £1000-£2000 per life-year, and £3000 per quality adjusted life-year. This was more cost effective than using FFP. Unfortunately, I do not have access to the full text to review the details.

PCC has only been compared to FFP in the treatment of hemophilia, so it’s not possible to draw any conclusions. The course of therapy for perioperative management of hemophiliacs is lengthy (meaning hideously expensive), and there was a cost-savings seen ($400,000)! Since we use only short duration therapy in trauma patients, the savings will be far less.

Bottom line: PCC is probably as effective as FFP, with less risk of volume overload. It is probably more cost effective as well. As the population of people that are placed on warfarin ages and becomes more susceptible to volume overload from plasma infusions, I think that PCC is going to become the reversal agent of choice. Use of Factor VIIa will continue to wane. However, someone needs to do some really good studies so we don’t get suckered.

Related posts:

Reference: Modeling the cost-effectiveness of prothrombin complex concentrate compared with fresh frozen plasma in emergency warfarin reversal in the United Kingdom. Clinical Therapeutics 32(14):2478-2493, 2010.

What’s The INR of Fresh Frozen Plasma?

So what’s the INR of FFP? Or stated another way, what’s the lowest you can correct a patient’s INR using infusions of fresh frozen plasma?

One of the mainstays of correcting coagulopathy, either from hemorrhage or due to medication like warfarin, is transfusion of FFP. Frequently, clinicians will write orders to administer FFP until a certain INR is achieved. What is a reaonable INR?

A “normal” INR is 1.0, plus or minus about 0.2, depending on your laboratory. However, two separate studies have shown that transfusion of FFP will not reliably decrease the INR below about 1.7. 

Bottom line: The answer to the question is about 1.6. If any clinician orders FFP transfusions with a goal INR below this, it probably won’t happen. And since transfusions of any product have risks, my “juice to squeeze” ratio of risk vs benefit begins to fail at an INR of 1.6. Below that point, the patient needs a normal temperature and good perfusion to drop their INR further.

References:

  • Toward rational fresh frozen plasma transfusion: the effect of plasma transfusion on coagulation test results. Am J Clin Pathol 126(1):133-139, 2006.
  • Effect of fresh frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities. Transfusion 46(8):1279-1285, 2006.

Not All Plasma Is The Same

Trauma patients who either have, or are at risk for coagulopathy, routinely have plasma administered. This provides coagulation factors to make up for lower levels in the injured patient and promotes the ability to clot. All hospitals with a blood bank have fresh frozen plasma (FFP) on hand, and busier ones may have thawed plasma (TP) available so that the patient does not have to wait the 45 minutes or so that it takes to thaw FFP.

But does freshly thawed FFP behave like thawed plasma that’s been sitting around for a while? The University of Texas – Houston trauma group presented some work that looked at this issue at the AAST conference last September. They looked at differences between freshly thawed FFP and plasma that had been thawed for 5 days. They examined the plasma’s ability to generate thrombin, the kinetics of clot formation along with the clot’s strength and stability, and clotting factor assays.

They found that the older thawed plasma showed decreased clotting potential, as well as diminished amounts of coag factors, especially V, VIII, von Willebrand factor and Protein S. The clotting response (measured by TEG) was slower and took longer to develop the maximum amount of clot.

Bottom Line: Older thawed plasma does not function the same as freshly thawed FFP in the lab. We don’t know if this difference has clinical significance in the coagulopathic trauma patient. However, it seems prudent to ask for the freshest bags of thawed plasma during massive tranfusion in hospitals that use it.

Reference: Multiple levels of degradation diminish stored plasma’s hemostatic potential. Holcomb et al. Oral presentation #10, 69th Annual Meeting of the AAST, September 22, 2010.