Tag Archives: performance improvement

Trauma Mortality Nomenclature: Part 1

This is the first in a series of four posts on mortality in trauma performance improvement.

The American College of Surgeons has a very specific naming convention for trauma deaths. This is an update of the system used prior to the current Optimal Resource Document (Orange Book), and has actually been revised since it was published. Of course, anytime you change something up, there will be some confusion. I’m going to compare old and new and give some of my thoughts on the nuances of the changes.

Old nomenclature: Nonpreventable death
Newest nomenclature: Mortality without opportunity for improvement (mortality w/o OFI)

They seem similar, right? But the new name takes into account a growing phenomenon: elderly patients (or younger ones for that matter) who sustain injuries that might be survivable, but are devastating enough to cause the family to withdraw support. Technically, the deaths could be preventable to some degree, but the family did not wish to attempt it. The new system recognizes that it is an expected outcome due to patient or family choice.

There are several key points to handling mortality w/o OFI. First, if your center is providing great care, the majority of your deaths  (about 90%) should be classified this way. Every one of them needs some degree of review, whether from just the trauma medical director and/or program manager or via the full trauma PI committee. However, your full PI committee needs to at least see a summary of the death if it’s not discussed in full.

How to decide on abbreviated review and report vs discussion by full committee? It depends on your trauma volume, and program preference. Higher volume centers do not usually have the luxury of discussing every case due to time constraints. Low volume centers may find value in reviewing these cases just to keep up on the detailed analysis and discussion required.

And how do you decide that there is no opportunity for improvement? The key is to look at the true clinical patient impact of the issue identified. If the issue is a minor clerical issue that has little impact on patient outcome or care, it can be classified as being without OFI. But it still needs to be reviewed, closed, and documented. If, however, future patients would benefit from having it closed, you must bump it up to the next category, mortality with opportunity for improvement.

In my next post, I’ll discuss the next type of trauma mortality, mortality with opportunity for improvement. I’ll follow up with the dreaded unanticipated mortality, and end with a bonus post on some nuances to that classification.

DOA vs DIE: What Does It Mean?

When a trauma patient is delivered to the emergency department but ends up in the morgue, two acronyms are typically thrown around. The first is DOA, which many people (think they) know about. This stands for “dead on arrival.” The other is DIE, which many are less familiar with. It stands for “died in ED,” and is less familiar to some.

What do they really mean, and why is the difference important?  It can be quite confusing. All US trauma centers report data to the National Trauma Data Bank (NTDB). This database actually recognizes three types of ED death:

  • DOA. This is defined as declared dead on arrival with no or minimal resuscitative attempts. This is usually construed to mean no invasive procedures.
  • Died after failed resuscitation. This is a death within 15 minutes of arrival and does include invasive procedures.
  • DIE. These deaths occur in the ED but outside the 15 minutes in the previous category. Obviously, invasive procedures will have been performed.

The ACS Trauma Quality Improvement Program (TQIP) lumps the last two together when constructing reports for subscribing trauma centers. The objective is to exclude truly nonsalvageable patients from analysis to allow us to learn from patients who actually may have some chance of survival. Incorrectly classifying a DOA patient as DIE can significantly and adversely impact the mortality numbers for a center within TQIP.

Unfortunately, DOA is frequently misunderstood by those collecting data for their hospital’s trauma registry. What is an invasive procedure? Inserting an IV? Mechanical CPR? Intubation? REBOA?

The confusion typically occurs because the trauma team has a certain sequence of life-saving maneuver that they carry out based on ATLS principles. They must do this at the same time patient salvageability is being assessed. What denotes that transition from DOA to DIE?

Unfortunately, there is no literature that really dissects this. Here are my thoughts:

  • Mechanical CPR. This is commonplace to offload some of the work prehospital providers are doing during transport of the critical patient. DOA
  • IV insertion. This is a routine procedure and is something that could have been done in the prehospital setting. DOA
  • IO insertion. Same as IV insertion. DOA
  • Fluid administration. Again, this is a continuation of prehospital care. DOA
  • IV drug administration. This one is tricky. If one cycle of ACLS drugs are given while quickly assessing signs of life, DOA. Otherwise, DIE.
  • Intubation. This is pretty invasive, right? But again, EMS may have done this in the field. So if it is done while assessing signs of life and then the patient is quickly pronounced, DOA. Otherwise, DIE
  • Pelvic splint. Wrapping the pelvis should be routine in initial management of blunt traumatic arrest. DOA
  • Central line insertion. This is invasive and takes a little time. DIE
  • REBOA. Really? DIE

Bottom line: This is a difficult concept, and I’m sure some will disagree with my opinions above. I look at whether the cares provided are a continuation of prehospital support, are minimally invasive, AND ensure that they are only routinely applied while a rapid search for signs of life is in progress. Anything above and beyond this should be considered DIE.

Please share your opinions via comments here or by Twitter!

Help Your PI Meetings Run Smoothly

Multidisciplinary Trauma PI Committee is an essential part of all trauma centers verified by the American College of Surgeons. A lot happens in that one hour (or so) meeting. But efficiency hinges on being prepared, and we’ve all experienced meetings where the case presentations just weren’t crisp.  Unfortunately, some of the committee members may not have even glanced at the record in advance, and try to catch up during the actual meeting!

What to do? Here’s a set of guidelines to help your presenters do the best job possible. They rely on advance preparation and good communication with your trauma program.


Download a pdf copy of the guidelines here

And please comment with your own twists and turns on making trauma PI an efficient and meaningful process!

When Does The PI Clock Start Ticking? The Answer, Part 2!

I analyzed the first of two PI clock scenarios in my last post. They are not always as obvious as they seem. Now let’s look at the second case:

A young male is involved in a motor vehicle crash and strikes his head. He enters your trauma center at exactly midnight as a trauma activation. Head CT shows a 7mm epidural hematoma with no shift and no effacement. GCS is 15, and the neurologic exam is completely normal. He is admitted to the SICU for neuro monitoring and is scheduled to have a repeat CT scan at 06:00. The scan shows significant expansion of the hematoma, with midline shift and ventricular effacement. He is taken to the OR for craniotomy by neurosurgery at 6:55.

This one is very similar to the first, except there is no indication to go to the OR at initial presentation. But about 7 hours later, he is in the operating room. So the PI trigger occurs, right? That’s more than 4 hours!

Not so fast! Let’s analyze this a bit more. Everything seems to be going well until the 6 AM CT scan. If the patient’s condition is unchanged, the earliest possible time the change in his head could have been recognized was shortly after 6:00. So the patient was actually in the OR less than an hour after the problem was recognized, right?

Not quite so fast again. The trauma PI program still has to examine the entire process from arrival until operation. Here are the questions that need to be answered:

  • Was neurosurgery involved in the initial evaluation in a timely manner?
  • Was the patient admitted to an appropriate inpatient unit?
  • Did appropriate monitoring occur?
  • Did any change in exam occur that could have suggested the hematoma was changing?
  • If so, did nursing and physician staff act appropriately with that information?

Bottom line: If everything went according to plan, and there was no change in exam or vital signs through the repeat CT scan, then this is an exemplary catch, and instead of sending the usual trauma PI nasty-gram to neurosurgery, they should receive a congratulatory note for providing such excellent service!

All too often, the trauma program just routinely sends out these “nasty-grams” without doing any further analysis of the data. And in cases like this one, the work involved in responding is just a waste of time. 

General rule: If the actual time noted for one of these time-sensitive filters is very, very long (e.g. delay to laparotomy of 62 hours), then look at it very closely. Did someone actually sit on a bleeding spleen for nearly three days, of was the patient doing well and suddenly failed nonoperative management? I think you know the answer.

And don’t forget to send out a few love letters to the other services for work well done from time to time! They probably cringe when they see trauma PI notes, since they always seem to imply something bad has happened.

When Does The PI Clock Start Ticking? The Answer, Part 1!

In my last post, I presented two potential performance improvement (PI) cases. I asked for your input as to when the clock should actually start for the 4-hour craniotomy/craniectomy rule. Today, I’ll give you my answer to the first case.

Lets look at it again:

A young male is involved in a motor vehicle crash and strikes his head. He enters your trauma center at exactly midnight as a trauma activation. Head CT shows a 12mm epidural hematoma with 8mm midline shift and ventricular effacement. GCS was 14 on arrival, but has declined to 12 by the time you leave the CT scanner. He is taken to the OR for craniotomy by neurosurgery at 4:15.

This one looks straightforward, right? But not so fast. The crani occurred more than 4 hours after arrival. Isn’t that a violation of the 4 hour filter? But did you know he needed an operation when he arrived in the ED? No! GCS and exam were reasonable, so the clock starts once the CT scan finishes, even if the surgeon doesn’t see them at that time. Why then? because the 4 hour rule is testing all of the following:

  • Whether a physician was present in CT and recognized what was on the images (not required, but reviewed if there was one there)
  • How long it takes for the radiologist to get the images
  • How long it takes for the report to be done
  • How quickly the surgeon or emergency physician review the report
  • How long it takes to contact the neurosurgeon
  • How long it takes them to see the patient and decide they need an operation
  • How easy it is to get this emergency case to the OR suite
  • How long it takes for anesthesia to do their assessment and get the patient into the room
  • How long it takes the OR team to be ready to cut

Lots of stuff! So if the scan finished any later than 12:15 am, this filter gets triggered. But hold on! In my opinion, 4 hours is a long time to wait for an emergent problem like this large epidural. Even if the scan finished at 12:30, the 4 hour rule is met, but why did it take so long to get the operation started? I’ve seen cases like this where the incision was started less than an hour after the patient arrived in the trauma bay!  Some of these cases need review even if they appear to meet the time limits.

Bottom line: Case #1 – the clock officially starts when the proof of clinical injury has been provided. This could be an abnormal physical exam, a CT scan, a critical lab test draw, a phone call from a concerned nurse, etc. The clock doesn’t necessarily start when the patient rolls in the door, unless you have some kind of weird superpowers!

I’ll review and analyze the second case tomorrow.