Tag Archives: blunt trauma

Blunt Traumatic Arrest In Kids: Are They Little Adults?

Over and over, we hear that children are not just little adults. They are a different size, a different shape. Their “normal” vital signs are weird. Drug doses are different; some drugs don’t work, some work all too well. 

But in many ways, they recover more quickly and more completely after injury. What about after what is probably the biggest insult of all, cardiac arrest after blunt trauma? The NAEMSP and the ACS Committee on Trauma recently released a statement regarding blunt traumatic arrest (BTA):

 “Resuscitation efforts may be withheld in any blunt trauma patient who, based on out-of-hospital personnel’s thorough primary patient assessment, is found apneic, pulseless, and without organized ECG activity upon arrival of EMS at the scene.“

The groups specifically point out that the guidelines do not apply to the pediatric population due to the scarcity of data for this age group.

The Children’s Hospital of Los Angeles and USC conducted a study of the National Trauma Data Bank, trying to see if children had a better outcome after this catastrophic event. Patients were considered as children if they were up to and including age 18.

Here are the factoids: 

  • Of 116,000 pediatric patients with blunt trauma, 7,766 had no signs of life (SOL) in the field (0.25%)
  • The typical male:female distribution for trauma was found (70:30)
  • 75% of those without SOL in the field never regained them. Only 1.5% of these survived to discharge from the hospital.
  • 25% regained SOL with resuscitation, and 14% of them were discharged alive.
  • 499 patients underwent ED thoracotomy, and only 1% survived to discharge. There was no correlation of thoracotomy with survival.
  • It appeared that there was a tendency toward survival for the very young (age 0-4) without SOL, but statistical analysis did not bear this out

Bottom line: Children are just like little adults when it comes to blunt cardiac arrest after trauma. Although it is a retrospective, registry-based study, this is about as big as we are likely to see. And don’t get suckered into saying "but 1.5% with no vital signs ever were discharged!” This study was not able to look at the quality of life of survivors, but there is usually significant and severe disability present in the few adult survivors after this event.

Feel free to try to re-establish signs of life in kids with BTA. This usually means lots of fluid and/or blood. If they don’t respond, then it’s game over. And, like adults, don’t even think about an emergency thoracotomy; it’s dangerous to you and doesn’t work!

Related posts:

Reference: Survival of pediatric blunt trauma patients presenting with no signs of life in the field. J Trauma 77(3):422-426, 2014.

Evaluation of Hematuria in Blunt Trauma

Hematuria ranges from microscopic to gross. Microscopic means blood that can only be seen with a microscope, and gross means visible to the naked eye. In trauma, we only care about gross hematuria, which ranges from the faintest of pink to the deepest red.

In trauma, gross hematuria is a result of an injury to kidney, ureter or bladder. Blunt injury to the ureter is so rare it’s reportable, so you can pretty much forget that one unless the mechanism is extreme. So you really just need to focus on kidney and bladder.

Any victim of blunt trauma that presents with visible hematuria needs to be evaluated by CT of the abdomen and pelvis with an added CT cystogram. Standard CT technique is done without a urinary catheter, or with the catheter clamped. Only 50% of bladder injuries show up with this technique.

CT cystogram is an add-on to the standard CT, and consists of the administration of contrast into the bladder which is then kept under pressure while the scan is done. Delayed slices through the pelvis after the bladder is depressurized and emptied is routine. Nearly 100% of bladder injuries are detected using this technique.

If the CT shows a renal laceration or hematoma, the patient should be admitted and managed according to your solid organ injury protocol. Kidney injuries fare better that livers and spleens, and only rarely require surgery. If no kidney or bladder injury is seen, the default diagnosis of a renal contusion is the culprit. No treatment is needed, and the patient can be discharged if no other injuries are present. The blood will clear over a few days, but may disappear and reappear a few times in the process. The patient can followup with their primary care physician in a week or two.

Syncope Workup in Trauma Patients

Syncope accounts for 1-2% of all ED visits, and is a factor in some patients with blunt trauma, especially the elderly. If syncope is suspected, a “syncope workup” is frequently ordered. Just what this consists of is poorly defined. Even less understood is how useful the syncope workup really is.

Researchers at Yale retrospectively looked at their experience doing syncope workups in trauma patients. They were interested in seeing what was typically ordered, if it was clinically useful, and if it impacted length of stay. 

A total of 14% of trauma patients had syncope as a possible contributor to their injury. The investigators found that the following tests were typically ordered in these patients:

  • Carotid ultrasound (96%)
  • 2D Echo (96%)
  • Cardiac enzymes (81%)
  • Cardiology consult (23%)
  • Neurology consult (11%)
  • EEG (7%)
  • MRI (6%)

Most of this testing was normal. About 3% of cardiac enzymes were abnormal, as were 5% of carotid imaging and 4% of echocardiograms. 

Important! Of the patients who underwent an intervention after workup, 69% could have been identified based on history, physical exam, or EKG and did not depend on any of the other diagnostic tests.

Bottom line: Don’t just reflexively order a syncope workup when there is a question of this problem. Think about it first, because the majority of these studies are nonproductive. It is not needed routinely in trauma patients with syncope as a contributing factor. Need for intervention can usually be determined by history, exam and EKG performed in the ED. And be sure to include the patients primary doctor in the loop.

Reference: Routine or protocol evaluation of trauma patients with suspected syncope is unnecessary. J Trauma 70(2):428-432, 2011.

Blunt Vertebral Artery Injury

Following up on yesterday’s post, I’ll deal with vertebral artery injuries today. These injuries are uncommon, making them hard to study and develop management recommendations. The literature suggests that about 1% of blunt trauma patients may sustain one of these. Most commonly, the method is motor vehicle crash, and just about any mechanism (hyperflexion, hyperextension, distraction injury, and facet fractures). Fracture of C1-3 has a higher association with the injury.

What is the natural history of this injury? If treated, 67% of occluded vessels recanalize, and 90% of stenotic arteries return to normal caliber. About 15% of untreated injuries will suffer a stroke. As seen in the paper cited yesterday, a good number of these are present on patient arrival and are nonpreventable. But the key issues are identifying an injury in the first place, and treating appropriately. Unfortunately, these are not straightforward.

Although the gold standard for detecting this lesion is digital subtraction angiography, no one does this in acute trauma patients anymore. CT angiography is well established, and the sensitivity rate approaches 99%. The main question is when to get it. To see my hospital’s interpretation of the literature, download our blunt imaging protocol below.

Treatment options include anticoagulation / antiplatelet therapy and endovascular therapy. There is much more experience with the former, but it can’t be used in patients at risk for bleeding (e.g. severe TBI). Unfractionated heparin is good for in-hospital use because it easily reversed. Longer term, anti-platelet agents are preferred. Aspirin is cheaper than clopidagrel, and no study has shown convincing superiority of one over the other. Determining whether endovascular stenting or embolization is necessary requires consultation with a neurosurgeon and interventional radiologist. The decision making is complex and not laid out in the literature. It’s flying by the seat of one’s pants, at best but can be a valuable adjunct.

Followup imaging is suggested to help determine when and if anti-platelet therapy can be discontinued. The best timing for these studies has not been worked out, but since these lesions tend to evolve over 7-10 days, any time after 2 weeks should be appropriate.

Bottom line: This is a tough topic because of the scarcity of good data, which in turn is due to the rarity of the injury. I believe that finding the lesions with good screening criteria offers the best chance of preventing complications such as stroke. Choice of management is best done in collaboration with your neurosurgical and radiologist colleagues.

Related posts:

Outcome After Blunt Cerebrovascular Injury (BCVI)

Blunt injuries to the carotid and vertebral arteries are not as uncommon as we used to think. Unfortunately, there’s a lot of controversy surrounding everything about them: screening, management, and outcome. A paper just out detailed outcomes in a (relatively) large series of these patients. 

As expected with this rare injury, it’s a retrospective study. A busy Level I center identified 222 patients with 263 BCVIs over a 4 ½ year period. Twenty four died before discharge and 11 afterwards. Of the remaining patients, only 74 could be located and only 68 could be persuaded to complete an interview and evaluation of their functional status. Functional Independence and Functional Activity Measurements were assessed (FIM/FAM).

Pertinent findings were:

  • 8 patients suffered a stroke during their initial hospital stay (5 were present on arrival in the ED)
  • 5 additional patients had a stroke after discharge
  • Only 20% reached the maximum FIM/FAM scores, even including patients who did not have a stroke
  • Patients with stroke had a significantly lower FIM/FAM
  • There was no difference in FIM/FAM in patients with carotid vs vertebral injury

Bottom Line: Even though it is limited, this is one of the best studies we will see on BCVI because it’s an uncommon problem at most centers. The most important fact here is that the stroke rate was 19% despite discharge on antiplatelet or anticoagulant medications. And if stroke occurs, it causes significant functional problems, as expected. It’s critically important that this injury be screened and identified appropriately, then given appropriate prophylaxis. More on this tomorrow.

Related posts:

Reference: Functional outcomes following blunt cerebrovascular injury. J Trauma 74(4):955-960, 2013.