Tag Archives: 3D Printing

Papers To Change Our Practice 3: Bio-Printing

This is the third and final topic that I discussed at the 25th Penn Trauma Reunion last Friday. Printer technology has progressed from dot-matrix printers (pushing ink out of a cloth ribbon with little metal pins) to laser printers (fusing dye rolled onto the paper) to inkjet printers (blowing little dots of ink onto paper out of a cartridge).

The next logical step was to go beyond printing with small flat dots of ink and using small spheres of plastic. These tiny spheres can be layered on top of each other using a 3D printer using the the same inkjet type technology and then fused together using a laser. These printers are popular in manufacturing, where they can be used to quickly create prototypes or small parts. Orthopedic surgeons have been using them to print out 3D representations of complex fractures to plan reconstructive surgery (click here for details).

Now consider replacing the little plastic spheres with various cell types cultured from a patient. Load up the “ink” cartridges and start printing some tissue! Anthony Atala runs the Institute for Regenerative Medicine at Wake Forest University and is a pioneer in using this technique. He is able to print 10×10 cm skin grafts on pigs with good results (read about it here). Atala demonstrated the concept of printing whole organs at the TED2011 conference last year. Watch the YouTube video of a kidney being printed here. At this stage of development, it is not a functioning organ, but it’s a great proof of concept.

I believe that this technology is extremely promising. Printing simple human tissues like skin will not be far off. Although it seems farfetched, the picture below shows what is in store in the future. Hopefully, the days of donated organ shortages is coming to an end.

Related posts:

Using A 3D Printer To Plan Orthopaedic Surgery

I’ve previously written about new printing technology applications in trauma. A recent article details a new way to use 3D printing technology for planning complex orthopaedic procedures.

An orthopedic registrar in Monklands Hospital (North Lanarkshire, Scotland) found a way to combine new printing technology and orthopaedics. CT scans are routinely taken of complex fractures. Scanners now have powerful software that enables us to create 3D reconstructions from the helical or axial images. However, these are just a series of 2D images viewed on a computer monitor.

Mr. Mark Frame found a way to convert the CT information into a format that can be used as input for a 3D printer. Using two open source (free) software packages for the Mac, OsiriX and MeshLab, he was able to create a medical quality 3D image file. The file was sent to a company that printed it using a 3D printer.

The cost? About $235 US plus a little time for a complete model of the pelvis. The advantage? The actual size 3D model can be used to select hardware and practice the repair technique. And the cost to own a 3D printer keeps coming down!

Related posts:

http://video.ted.com/assets/player/swf/EmbedPlayer.swf

Printing A Whole Kidney?

And so it begins. I wrote recently about using a special version of a 3D printer to print a skin graft (read it here). I also speculated that we could be seeing 3D printers that could eventually print entire organs at some point. Well, leave it to Wake Forest again.

They demonstrated the concept of printing an organ at the 2011 TED Conference (Technology, Entertainment, Design) last week in Long Beach. Now, this was not a working organ, just a concept demo of sample tissue. Nonetheless, this is a preview of things to come. Imagine when we can print up a new kidney to replace the shattered one in the pan on the back table of the OR.

Check out this fascinating video!