Chest Tube Insertion: Does Size Matter?

I’m old school. I cut my teeth during the days when there were only two sizes of chest tubes for trauma: big and bigger. That meant 36 French or 40 French. Period. I even went as far as adding a chest tube insertion video to my collection of YouTube posts:

But recently, someone posted a comment on that video to the effect that we are moving away from large chest tubes for trauma.

But are we? Really? Am I missing something? I’ve written a few posts in the last two years, examining some of the newer research on this topic. One paper was so-so, one was terrible.

So I’ve decided to really hit this topic hard this week. I want to know what the literature really says on this topic. So I’ve located the best papers I could and I’m going to do a teardown over the next few days. That way I can make sure that my video is up to date, and that my (and your) practice is as well.

Tomorrow, I’ll start with work that compares large and smaller bore tubes. Through the week, I’ll work my way down in size to papers suggesting that pigtail catheters are as good as a chest tube.

Hope you enjoy! We’ll all learn something!

Massive Transfusion: What’s The Right Ratio?

In my last post, I analyzed a survey that studied the massive transfusion protocol (MTP) practices of academic Level I trauma centers in the US. What centers do is one thing. But what does the literature actually support? A group from Monash University in Melbourne, Australia and the National Health Service in the UK teamed up to review the literature available through 2016 regarding optimal dose, timing, and ratio of products given during MTP.

One would think that this was easy. However, the search for high quality ran into the usual roadblock: the fact that there is not very much of it. The authors scanned MEDLINE for randomized, controlled studies on this topic, and found very few of them. Out of 131 articles that were eligible, only 16 were found to be suitable for inclusion, and 10 of them were still in progress. And only three specifically dealt with the ratio question. Even they  were difficult to compare in a strict apples to apples fashion.

Here are the factoids that could be gleaned from them:

  • There was no difference in 24-hour or 30-day mortality between a ratio of 1:1:1 (FFP:platelets:RBC) vs 1:1:2
  • However, a significantly higher number of patients  achieved hemostasis in the 1:1:1 group (86% vs 78%)
  • There was no difference in morbidity or transfusion reactions in the two groups
  • One study compared 1:1 component therapy with whole blood transfusion and found no difference in short-term or long-term mortality or morbidity

Bottom line: As usual, the quality of available data is poor if one limits the field to randomized, controlled studies. Ratios of 1:1:1 and 1:1:2 appear to be equally effective given the limited information available. A number of papers not included in this review (because of their less rigorous design) do seem to indicate that higher ratios of RBC (1:3-4) appear to be detrimental. And as time passes, more and hopefully better studies will be published.

What does this all mean for your MTP? Basically, we still don’t know the best ratio. However, it is recommended that your final ratios of FFP:RBC end up somewhere between 1:1 and 1:2. The only way to ensure this is to set up your MTP coolers so the the ratio of product they contain is better than 1:2. This means more plasma than 1 unit per 2 units of red cells. 

If you set it at the outside limit of 1:2, then that is the best ratio you can ever get assuming everything goes perfectly. However, if you have to thaw frozen plasma, use too much emergency release PRBC before activating MTP, or someone cherry-picks the coolers to transfuse what they think the patient needs, the ratios will quickly exceed this boundary.

So be sure to load your coolers with ratios that are closer to 1:1 to ensure that your final ratios once MTP is complete are what you want them to be. And monitor the final numbers of every one of your MTP activations through your trauma performance improvement program so you know what your patients are really receiving.

Reference: Optimal Dose, Timing and Ratio of Blood Products in Massive
Transfusion: Results from a Systematic Review. Transfusion Med Reviews 32:6-15, 2018.

Massive Transfusion: What Ratios Are People Using?

This is the first of a two-part series on massive transfusion protocol (MTP) ratios. Today, I’ll write about what ratios trauma centers around the country are using. Tomorrow I’ll review the literature we have to date on what the correct ratio should be. Are we all doing the right thing or not?

Back in the old days (which I remember fondly), we didn’t pay too much attention to the ratio of blood to plasma. We gave a bunch of bags of red cells, then at some point we remembered that we should give some plasma. And platelets? We were lucky to give any! And to top it all off, we gave LOTS of crystalloid. Turns out this was not exactly the best practice.

But things have changed. Some good research has shown us that a nice mix of blood component products is good and too much crystalloid is bad. But what exactly is the ideal mix of blood products? And what is everybody else doing? I’ll try to answer these questions in this series.

So first, what are all the other trauma centers doing? An interesting medley of anesthesia and pathology groups from the University of Chicago, a Dallas-based anesthesia group, and a blood center in my home base of St. Paul, conducted a survey of academic medical centers in 2016. They wanted to find out how many actually had a MTP and to scrutinize the details.

They constructed a SurveyMonkey survey and sent it to hospitals with accredited pathology residencies across the US. There were 32 questions in the survey, which asked for a lot of detail. As you can probably personally attest, the longer and more complicated the survey, the less likely you are to respond. That certainly happened here. Of 107 surveys sent out, it took a lot of nagging (initial email plus two nags) to get a total of 56 back.

Here are the factoids:

  • Most were larger hospitals, with 74% having 500 or more beds
  • All had massive transfusion protocols
  • Trauma center level: Level I (77%), Level II (4%), Level III (4%), Level IV (2%), no level (14%)
  • Nearly all (98%) used a fixed ratio MTP; very few used any lab-directed (e.g. TEG/ROTEM) resuscitation
  • Target RBC:plasma ratio: 1:1 (70%), 1.5:1 (9%), 2:1 (9%), other (9%)
  • Only 58% had the same RBC:plasma ratio in each MTP cooler
  • More than 86% had thawed plasma available (remember, these were generally large academic centers)
  • Half stored uncrossmatched type O PRBCs outside the blood bank, usually in the ED; only 1 stored thawed plasma in the ED
  • A total of 41% had more than one MTP (trauma, OB, GI, etc.)
  • 84% had some type of formal review process once the MTP was complete
  • About 68% had modified their MTP since the original implementation. Some increased or decreased ratios, expanded MTP to non-trauma services, decreased the number of units in each pack, changed to group A plasma from AB, or switched from ratio to TEG/ROTEM or back.

Bottom line: This is an intriguing snapshot of MTP practices around the country that is about four years old. Also remember, this is a somewhat skewed dataset. The survey was directed toward hospitals with academic pathology programs, not trauma centers. However, there is enough overlap that the results are probably generalizable. 

Most centers are (were) using MTP packs containing six units of PRBCs, and were attempting to achieve a fixed 1:1 ratio. Half of hospitals had the same number of units in each cooler, half varied them by cooler number. Nearly half had multiple flavors of MTP for different specialties. Very few used TEG/ROTEM during the initial phased of MTP. Most modified their MTP over time.

I’ve written quite a lot on most of these issues. See the links to my “MTP Week” series from earlier this year, below.

Tomorrow, I’ll review what we know and don’t know about the proper ratios to use in your MTP.

Reference: Massive Transfusion Protocols: A Survey of Academic
Medical Centers in the United States. Anesth & Analg 124(1):277-281, 2017.

MTP week series:

What Are: These Spondylo… Words

Spondylosis. Spondylolisthesis. Spondylitis. These words are tossed about blithely by our orthopedic and neurosurgical spine colleagues. But many trauma professionals are confused by the terms. What do they mean? What do they look like?

Let’s start with the root of the word, spondylo… This part is derived from the Greek word spondylos, meaning spine. Now let’s combine it with some of the usual suffixes.

The first one is -osis, so this creates the word spondylosis. Although -osis can denote the “condition of being a …”, in medicine it frequently means a disease or pathological process. Think diverticulosis of the colon. Spondylosis usually denotes a degenerative process of the spine. This is typically due to arthritis and results in bone spurs and disc narrowing. Here is an image of a spine with significant spondylosis:

Now let’s add -listhesis. This is another Greek word that means “slipping or falling.” So in this case, the full word means one vertebra slipping over another. Here’s an image of an anterior spondylolisthesis:

Finally, let’s add -itis. This is the Greek suffix for inflammation. So spondylitis is an inflammatory process of the spine. This can be due to infectious or autoimmune causes. One of the more common types is ankylosis spondylitis, which is an autoimmune variant of rheumatoid arthritis. This causes inflammation of the facet joints and the stabilizing ligaments, leading to fused vertebra and a characteristic patient posture. Here’s a rather extreme case:

I hope this little vocabulary lesson has been helpful. Now go impress your spine specialty colleagues!

Deer Hunting and Tree Stand Injuries

Deer hunting season is upon us again in Minnesota and Wisconsin, so it’s time to plan to do it safely. Although many people think that hunting injuries are mostly accidental gunshot wounds, that is not the case. The most common hunting injury in deer season is a fall from a tree stand.

Tree stands typically allow a hunter to perch 10 to 30 feet above the ground and wait for game to wander by. They are more frequently used in the South and Midwest, usually for deer hunting. A  study by the Ohio State University Medical Center looked at hunting related injury patterns at two trauma centers.

Half of the patients with hunting-related injuries fell, and 92% of these were tree stand falls. Only 29% were gunshots. And unfortunately, alcohol increases the fall risk, so drink responsibly!

Most newer commercial tree stands are equipped with a safety harness. The problem is that many hunters do not use it. And don’t look for comparative statistics anytime soon. There are no national reporting standards. No matter how experienced you are, always clip in to avoid a nasty fall!

The image on top is a commercial tree stand. The image below is a do-it-yourself tree stand (not recommended). Remember: gravity always wins!

Reference: Tree stands, not guns, are the midwestern hunter’s most dangerous  weapon. Am Surg 76(9):1006-1010, 2010.

Home of the Trauma Professional's Blog

Do you want to get a daily email every time there’s a new post? See what I’m up to.

Click here to get details and subscribe!

Request a Topic

Subscribe now to the Trauma MedEd Newsletter and get a free copy of my guide, "How To Keep Up With Your Literature"!