The Evolution Of Penetrating Neck Trauma Management – Part 2: Initial Steps

In my previous post, I described the early days of penetrating neck injury management and introduced a paper suggesting that this concept should be revised. Today, I will summarize a paper by Siletz and Inaba that is currently in press and outlines what the contemporary way of treating these injuries should be.

Step 1. If present, rapidly control external hemorrhage and airway compromise. As always, bleeding should be controlled by direct pressure or packing. Direct pressure does not look like this:

The goal is to create a zone of pressure higher than the systolic BP perfectly in the area of bleeding. Since pressure is force per unit area, a larger area like that show above diffuses the maximum pressure and just doesn’t work. Note the ongoing bleeding shown in the picture.

Here’s what direct pressure looks like:

Or

A single finger (or maybe two) should be placed on or in the wound. If deeper bleeding is a problem, the same kind of pressure can be accomplished by packing with gauze. If gauze is used, however, pressure must usually be applied over the gauze to make sure that the underlying tissues remain pressurized.

If gauze packing is not practical because of this need for additional pressure, a urinary catheter can be inserted into the wound and inflated until the bleeding stops.

Courtesy Core EM

Airway control should ideally occur in the operating room. Given the proximity of this wound to airway structures, it is imperative that an ideal environment is present when the airway is inserted. A skilled anesthesiologist should be present, with difficult airway equipment available if needed. The surgeon should be standing by with all equipment needed to obtain a surgical airway if needed. Even though the patient may be breathing okay, the airway structures may be distorted by hematoma or injury.

You have probably noted that this is the same initial assessment we used in the old three zones approach. In the next post, I will discuss the details of a new assessment approach that considers the neck a single unit.

 

The Evolution Of Penetrating Neck Trauma Management – Part 1

“When the facts change, I change my mind. What do you do, sir?”

This is a famous quote from John Maynard Keynes. (Or is it? There is some debate over its authenticity, but you get the idea it tries to convey.) Our knowledge base continually changes, so we must be willing to change our minds (and practices) based on new, reliable information.

The management of penetrating neck injury is one of those facets in trauma care that has undergone slow but steady progress over the past 40 years of my career. In the old days, we quickly identified the zone of injury and proceeded to the operating room for Zone II injuries. We had to think a little harder about the other zones to be certain that we needed to be in the OR. But overall, the threshold for surgery was low.

Things have been changing. Five years ago, I published a post detailing new work by Inaba et al. at LAC+USC. This started a move toward using more straightforward criteria and advanced imaging to assist decision-making with these injuries.

In this post, I’ll summarize the original paper. In the next section, I will describe the group’s paper, which is currently in press and outlines the full framework for workup or penetrating neck injury.

The advance that makes this new method possible is based on the high degree of accuracy that CT angiography of the neck provides. It is very sensitive for identifying even minor injuries to the aerodigestive tract and vascular system.

The trauma group at LAC+USC organized a prospective, multicenter study using a multidetector CT angiography of the neck for initial screening of penetrating neck injury. This allows the evaluation of the neck as a single unit, not as three zones. It also solves the problem of trying to apply zones to injuries that cross several of them.

The new algorithm that was tested utilized an initial physical exam, first looking specifically for “hard signs” of injury.  The following were considered the hard signs:

  • Active hemorrhage
  • Expanding or pulsatile hematoma
  • Bruit or thrill over the injured area
  • Unresponsive shock
  • Hemoptysis or hematemesis
  • Air bubbling from the wound

These patients were immediately taken to the OR and explored through an appropriate incision.

Patients with no signs or symptoms were admitted and observed for at least 24 hours. All other patients were considered to have “soft signs.” They underwent multidetector CT angiography of the neck, with a scanner having at least 40 slices. Further evaluation of these patients was based on the exam and CT scan.

Here are the factoids:

  • 453 patients with penetrating neck injuries were identified during the 31-month study period
  • 9% had hard signs and were taken to the OR; 50% had soft signs and underwent CT; 41% had no signs and were observed
  • For soft sign patients, 86% of scans were negative, and all were true negatives after observation
  • 12% of soft sign patients had a positive scan, and of those, 81% were true positives
  • four patients (2%) with soft signs had too much artifact for an accurate CT, and other tests were performed; 1 of the 4 had an injury
  • Sensitivity of CTA was 100%, and specificity was 97.5% in the soft sign patients
  • The authors concluded that CTA is very reliable for identifying injuries in patients with soft signs and that patients with no signs do not require scanning, only observation

Bottom line: This was an intriguing paper that utilized both physical examination and CT angiography. The results were impressive, and they supported the argument that CTA is not required in all stable patients. With additional numbers and time, it has become clear that we can safely adopt this algorithm. My next post will flesh out the details.

Reference: Evaluation of multidetector computed tomography for
penetrating neck injury: A prospective multicenter study. J Trauma 72(3):576-584, 2012.

When Should You Activate Your Backup Trauma Surgeon?

The American College of Surgeons requires all US Trauma Centers to publish a call schedule that includes a backup trauma surgeon. This is important for several reasons:

  • It maintains a high level of care when the on-call surgeon is encumbered with multiple critical patients, or has other on-call responsibilities such as acute care surgery
  • It reduces the need to place the entire trauma center on divert due to surgeon issues

However, the ACS does not provide any guidance regarding the criteria for and logistics of mobilizing the backup surgeon. In my mind, the guiding principle is a simple one:

The backup should be called any time a patient is occupying the on-call surgeon’s time to the extent that they cannot manage the care of a newly arrived (or expected to arrive) patient with critical needs that only the surgeon can provide.

There’s a lot of meat in that sentence, so let’s go over it in detail. 

First, the on-call surgeon must already be busy. This means that they are actively managing one or more patients. Depending on the structure of the call system, they may be involved with trauma patients, general/acute care surgery patients, ICU patients, or a combination thereof. Busy means tied up to the point that they cannot meaningfully manage another patient.

Note that I did not say “evaluate another patient.” Frequently, it is possible to have a resident (at an appropriate training level) or advanced practice provider (APP) see the new patient while the surgeon is tied up, say in the operating room. They can report back, and the surgeon can then weigh his or her choices regarding the level of management that will be needed. Or if operating with a chief resident, it may be possible for the surgeon to briefly leave the OR to see the second patient or quickly check in on the trauma resuscitation. Remember, our emergency medicine colleagues can easily run a trauma activation and provide initial care for major trauma patients. They just can’t operate on them.

What if the surgeon is in the OR? Should they call the backup every time they are doing a case at night? Or every time a trauma activation is called while they are doing one? In my opinion, no. The chance of having a highest level trauma activation called is not that high, and as above, the surgeon, resident, or APP may be able to assess how much attention the new patient is likely to need. But recognize that the surgeon may not meet the 15 minute trauma activation attendance requirement set forth by the ACS.

However, once such a patient does arrive (or there is notification that one of these patients is on the way), call in the backup surgeon. These would include patients that are known to, or are highly suspected of needing immediate operative management. Good examples are penetrating injuries to the torso with hemodynamic problems, or those with known uncontrolled bleeding (e.g. mangled extremity).

If two or more patients are being managed by the surgeon, and they believe that they would not be able to manage another, it’s a good idea to notify the backup that they may be needed. This lets them plan their evening better to ensure rapid availability.

Finally, what is the expected time for the backup to respond and arrive at the hospital to help? There is no firm guideline, but remember, your partner and the patient are asking for your assistance! In my opinion, total time should be no more than 30 minutes. If it takes longer, then the trauma program should look at its backup structure and come up with a way to meet this time frame.

Video: Minimally Invasive Repair Of Rectal Injuries

Extraperitoneal rectal injury repair has evolved considerably over the past 40 years. Way back when, this injury automatically triggered exploration, diverting colostomy with washout of the distal colon, and presacral drain insertion (remember those?).

We eventually backed off on the presacral drains (pun intended), which didn’t make a lot of sense anyway. And we gave up on dissecting down deep into the pelvis to approach the injury. This only served to contaminate an otherwise pristine peritoneal cavity. Ditto for the distal rectal washout. So we have been performing a diverting colostomy as the primary method of treatment for years.

A Brief Report in the British Medical Journal Open shows us what may very well be the next stage in treating these injuries. Whereas they were previously left to heal on their own followed by colostomy closure after a few months, these authors from Sunnybrook Health Sciences Centre in Toronto are promoting a minimally invasive approach to definitive management.

They detail two cases, one an impalement by a steel rod through the rectum and bladder, and one stab to the buttock. The authors dealt with the non-rectal injuries using conventional techniques. The rectal injuries were repaired using trans-anal minimally invasive surgery (TAMIS). Both were discharged without complications.

Here is a video of the technique used in the stab victim (no audio):

video

play-rounded-fill play-rounded-outline play-sharp-fill play-sharp-outline
pause-sharp-outline pause-sharp-fill pause-rounded-outline pause-rounded-fill
00:00

Bottom line: It’s about time! As long as there is not a destructive injury to the extraperitoneal rectum, this seems like a great technique to try. It may very well eliminate the need for a diverting colostomy.

But remember, this is only a case report. We don’t know about antibiotic duration, followup imaging, longer term complications, or anything really. A larger series of cases is warranted to provide these answers. This will take some time due to the low frequency of this injury. So if you try it, build your own series and publish it so we all can learn!

Reference: Minimally invasive approach to low-velocity penetrating extraperitoneal rectal trauma. Trauma Surg Acute Care Open. 2020 May 12;5(1):e000396. doi: 10.1136/tsaco-2019-000396. PMID: 32426526; PMCID: PMC7228675.

Death Knell For The IVC Filter

IVC filter insertion has been one of the available tools for preventing pulmonary embolism for decades—or so we thought. Its popularity has swung back and forth over the years and has been in the waning stage for quite some time now. This pendulum-like motion offers an opportunity to study effectiveness when coupled with some of the large datasets that are now available to us.

IVC filters have been used in two ways: prophylactically in patients at high risk for pulmonary embolism (PE) who cannot be anticoagulated for some reason and therapeutically once a patient has already suffered one. Over the years, guidelines have changed and have frequently been in conflict. Currently, the American College of Chest Physicians does not recommend IVC filters in trauma patients, and the Eastern Association for the Surgery of Trauma just released a new practice guideline for them.

A previous study from Boston University reviewed its own experience retrospectively over a 9-year period. This cohort study looked at patients with and without filters, matching them for age, sex, race, and injury severity. The authors specifically looked at mortality and used four study periods during the 9-year interval.

Here are the factoids:

  • Over 18,000 patients were admitted during the study period, resulting in 451 with an IVC filter inserted and 1343 matched controls
  • The patients were followed for an average of 4 years after hospitalization
  • Mortality was identical between patients with filters vs the matched controls

dvt-study

  • There was still no difference in mortality, even if the patients with the filter had DVT or PE present when it was inserted
  • Only 8% ever had their “removable” filter removed (!)

And now, there is a paper in press from the Eastern Association for the Surgery of Trauma with their newest practice guideline on IVC filters. They examined the literature on patients with or at risk for venous thromboembolism (VTE) and sought to determine whether IVC filters should be used prophylactically or therapeutically in these situations. They reviewed twenty-one studies, most of which were of the usual low quality.  They drew the following conclusions:

  • IVC filters should not be placed routinely for prophylaxis in patients without DVT who cannot receive chemoprophylaxis.
  • EAST conditionally recommends that IVC filters not be placed in patients with DVT who cannot receive prophylaxis. This recommendation was conditional due to the very poor quality of the few papers available to answer this question.

Bottom line: It looks like the end is near for the IVC filter. However, I can still foresee a few situations where there might be some utility. Consider the case where a patient has DVT, cannot be anticoagulated, and is showering emboli to the lungs. Otherwise, it appears that this device is on its last legs!

References:

  1. Association Between Inferior Vena Cava Filter Insertion
    in Trauma Patients and In-Hospital and Overall Mortality. JAMA Surg, online ahead of print, September 28, 2016.
  2. Role of Vena Cava Filter in the Prophylaxis and Treatment of Venous Thromboembolism in Injured Adult Patients: A  Systematic Review, Meta-Analysis, and Practice Management Guideline from the Eastern Association for the Surgery of Trauma. Journal of Trauma and Acute Care Surgery, Publish Ahead of Print DOI: 10.1097/TA.0000000000004289, 2024.

Home of the Trauma Professional's Blog