All posts by The Trauma Pro

What’s The Best Pelvic Binder? Part 1

Several products for compressing the fractured pelvis are available. They range from free and simple (a sheet), to a bit more complicated and expensive. How to decide which product to use? Today, I’ll discuss the four commonly used products. Tomorrow, I’ll look at the science. And on Wednesday, I’ll show you a creative way to make your own free pelvic binder.

First, let’s dispense with the sheet. Yes, it’s very cheap. But it’s not easy to use correctly, and more difficult to secure.

There are three commercial products that are commonly used. First is the Pelvic Binder from the company of the same name (www.pelvicbinder.com). It consists of a relatively wide belt with a tensioning mechanism that attaches to the belt using velcro. One size fits all, so you may have to cut down the belt for smaller patients. Proper tension is gauged by being able to insert two fingers under the binder.

Next is the SAM Pelvic Sling from SAM Medical Products (http://www.sammedical.com). This device is a bit fancier, is slimmer, and the inside is more padded. It uses a belt mechanism to tighten and secure the sling. This mechanism automatically limits the amount of force applied to avoid problems with excessive compression. It comes in three sizes, and the standard size fits 98% of the population, they say.

Finally, there is the T-POD from Pyng Medical (http://www.pyng.com/products/t-podresponder). This one looks similar to the Pelvic Binder in terms of width and tensioning. It is also a cut to fit, one size fits all device. It has a pull tab that uses a pulley system to apply tension. Again, two fingers must be inserted to gauge proper tension.

So those are the choices. Tomorrow, I’ll go over some of the data and pricing so you can make intelligent choices about selecting the right device for you.

Do You Really Need To Repeat That Trauma Bay Xray?

It happens all the time. You get that initial chest and/or pelvic xray in the resuscitation room while evaluating a blunt trauma patient. A few minutes later the tech returns with another armful of xray plates to repeat them. Why? The patient was not centered properly and part of the image is clipped.

Where is the left side of the chest, and do we care?

Do you really need to go through the process of setting up again, moving the xray unit in, watching people run out of the room (if they are not wearing lead, and see my post below about how much radiation they are really exposed to), and shooting another image? The answer to the question lies in what you are looking for. Let’s address the two most common (and really the only necessary) images needed during early resuscitation of blunt trauma.

First, the chest xray. You are really looking for 3 things:

  • Big air (pneumothorax)
  • Big blood (hemothorax)
  • Big mediastinum (hinting at aortic injury)

Look at the clipped xray above. A portion of the left chest wall is off the image. If there were a large pneumothorax on the left, would you be able to see it? What about a large hemothorax? And the mediastinum is fully included, so no problem there. So in this case, no need to repeat immediately.

The same thing goes for the pelvis. You are looking for gross disruption of the pelvic ring, especially posteriorly because this will cause you to intervene in the ED (order blood, consider wrapping the pelvis). So if parts of the edges or top and bottom are clipped, no big deal.

Bottom line: Don’t let the xray tech disrupt the team again by reflexively repeating images that are not technically perfect. See if you can use what you already have.  And how do you decide if you need to repeat it later, if at all? Consider the mechanism of injury and the physical exam. Then ask yourself if there is anything you could possibly see that was not imaged the first time that would change your management in any way. If not, you don’t need it. But it certainly will irritate the radiologists!

CIWA Protocol Precautions

The post entitled “CIWA Demystified” is one of the most popular on this blog. This type of symptom triggered therapy for alcohol withdrawal applies some degree of objectivity to a somewhat subjective problem. However, it is possible to take it too far.

A retrospective review of registry patients who received CIWA guided therapy was performed. A total of 124 records were reviewed for appropriateness of CIWA useand adverse events. They found that only about half of patients (48%) met both usage criteria (able to communicate verbally, recent alcohol use). And 31% did not meet either criterion! There were 55 nondrinkers in this study, and even though 64% of them could communicate that fact, they were placed on the protocol anyway! Eleven patients suffered adverse events (delirium tremens, seizures, death). Four of them did not meet criteria for use of the protocol.

Bottom line: In order to be placed on the CIWA protocol, a patient must have a recent history of alcohol use, and must be able to communicate verbally. Some physicians assume that patients with autonomic hyperactivity or psychological distress are withdrawing and order the CIWA protocol. This can  cover up other causes of delirium, or may make it worse by administering benzodiazepines. This represents inappropriate use of the protocol!

Related post: The CIWA Protocol Demystified

Reference: Inappropriate use of symptom-triggered therapy for alcohol withdrawal in the general hospital. Mayo Clin Proc 83(3):274-279, 2008.

The CIWA Protocol Demystified

What exactly is the CIWA protocol?

It is a tool used commonly in the US that helps clinicians assess and treat potential alcohol withdrawal. A significant amount of injury in this country is due to the overuse of alcohol. A subset of these patients are admitted and do not have access to alcohol. They may begin to withdraw within a few days, and this condition can lead to dangerous complications.

The Clinical Institute Withdrawal Assessment measures 10 items that are associated with withdrawal:

  • Nausea / vomiting
  • Anxiety
  • Paroxysmal sweats
  • Tactile disturbances (itching, bugs crawling on skin, etc)
  • Visual disturbances
  • Tremors
  • Agitation
  • Orientation
  • Auditory disturbances
  • Headache

All items are measured on a scale of 0-7 with the exception of orientation, which uses a scale of 0-4. All subscores are tallied to arrive at the final score.

The total score is used to determine whether benzodiazepines should be given to ameliorate symptoms or avoid seizures. Typically, a threshold is selected (8 or 10) and no medications are needed as long as the patient is under it. Once it is exceeded, graduated doses of lorazepam or diazepam are given and vital signs and CIWA scores are repeated regularly. The protocol is discontinued once the patient has three determinations that are under the threshold.

The individual dosing scale and monitoring routine varies by hospital. Look at your hospital policy manual to get specifics for your institution.

For a copy of the CIWA scoring criteria, click here.

Tomorrow, precautions when using the CIWA protocol.

How Many Salt Tabs In A Liter Of Saline?

Seems like a simple, silly question, right? I dare you to figure it out without reading this post!

horse-salt-block-lick2

On occasion, our brain injured trauma patients have sodium issues. You know, cerebral salt wasting. Trying to maintain or regain the normal range, without making any sudden moves can be challenging. There are a lot of tools available to the trauma professional, including:

  • Saline
  • Hypertonic saline
  • Salt tablets
  • Fluid restriction
  • Some combination thereof

Fun times are had trying to figure out how much extra sodium we are giving with any of the first three items. This is important as you begin to transition from the big guns (hypertonic), to regular saline, and then to oral salt tabs.

Below is a quick and dirty conversion list. I won’t make your heads explode by trying to explain the math involved changing between meq, mg, moles, sodium and sodium chloride.

  • The “normal saline” bags we use are actually 0.9% saline (9 gm NaCl per liter)
  • Hypertonic saline can be 3% or 5% (30 gm or 50 gm per liter)
  • Salt tabs are usually 1 gm each (and oh so yummy)

Therefore, a liter of 0.9% normal saline is the same as 9 salt tabs.

A liter of 3% hypertonic saline is the same as 30 salt tabs. The usual 500cc bag contains 15.

A liter of  5% hypertonic saline is the same as 50 salt tabs. The usual 500cc bag contains 30.

To figure out how many tablets you need to give to match their IV input, calculate the number of liters infused, then do the math! And have fun!