PAs and NPs In Level I Trauma Centers

Trauma service staffing is important to maintaining trauma center status. Teaching centers in the US have been grappling with resident work hour rules, and non-teaching centers have always had to deal with how to adequately staff their trauma service. What is the impact of staffing a trauma center with midlevel practitioners (MLPs) such as physician assistants and nurse practitioners?

A state designated Level I trauma center in Pennsylvania retrospectively examined the effect of adding MLPs to an existing complement of residents on their trauma service. They examined the usual outcomes, including complications, lengths of stay, ED dwell times and mortality. 

Here are the more interesting results:

  • ED dwell time decreased for trauma activations and transfers in, but it increased for trauma consults. Of note, data on dwell times suffered from inconsistent charting.
  • ICU length of stay decreased significantly
  • Hospital length of stay decreased somewhat but did not achieve significance
  • The incidence of most complications stayed the same, but urinary tract infection decreased significantly
  • There was no change in mortality

Bottom line: There is a growing body of literature showing the benefits of employing midlevel providers in trauma programs. Whereas residents may have a variable interest in the trauma service based on their career goals, MLPs are professionally dedicated to this task. This study demonstrates a creative and safe solution for managing daily clinical activity on a busy trauma service.

Reference: Utilization of PAs and NPs at a level I trauma center: effects on outcomes. J Amer Acad Physician Assts, July 2011.

By Popular Demand: CIWA Demystified

What exactly is the CIWA protocol? For one, it’s the most popular search term on this blog! Here’s a recap.

It is a tool used commonly in the US that helps clinicians assess and treat potential alcohol withdrawal. A significant amount of injury in this country is due to the overuse of alcohol. A subset of these patients are admitted and do not have access to alcohol. They may begin to withdraw within a few days, and this condition can lead to dangerous complications.

The Clinical Institute Withdrawal Assessment measures 10 items that are association withdrawal:

  • Nausea / vomiting
  • Anxiety
  • Paroxysmal sweats
  • Tactile disturbances (itching, bugs crawling on skin, etc)
  • Visual disturbances
  • Tremors
  • Agitation
  • Orientation
  • Auditory disturbances
  • Headache

All items are measured on a scale of 0-7 with the exception of orientation, which uses a scale of 0-4. All subscores are tallied to arrive at the final score.

The total score is used to determine whether benzodiazepines should given to ameliorate symptoms or avoid seizures. Typically, a threshold is selected (8 or 10) and no medications are needed as long as the patient is under it. Once it is exceeded, graduated doses of lorazepam or diazepam are given and vital signs and CIWA scores are repeated regularly. The protocol is discontinued once the patient has three determinations that are under the threshold.

The individual dosing scale and monitoring routine varies by hospital. Look at your hospital policy manual to get specifics for your institution.

For a copy of the CIWA scoring criteria, click here.

Shift Work And Fatigue In Air Medical Crews

Most trauma professionals are shift workers to one degree or another. It is well documented that sleep problems and fatigue can occur with this type of work, depending on the structure of the shift. A number of studies have been carried out in physicians and prehospital providers. But what about prehospital air crews?

Air medical providers are faced with two challenges: critically ill and injured patients and a challenging work environment. Typically, work consists of 12 or 24 hour shifts, and all of this is conducive to sleep problems and fatigue. 

The University of Pittsburgh looked at this problem, performing a battery of questionnaires and cognitive tests in their air medical service before and after each shift. They studied 37 subjects, and found the following interesting tidbits:

  • 95% of all crew members had poor baseline sleep quality
  • Fatigue levels decreased over the shift (both 12 and 24 hr)!
  • Crews were able to get some sleep while on duty (1 hour in a 12 hour shift, 7 hours in a 24 hour shift)
  • There was a mild increase in cognitive test performance at the end of the shift, although it was not statistically significant

Bottom line: Don’t anyone try to generalize these results to all flight crews! This was a sample of a single flight service, and is not necessarily representative of others. Poor baseline sleep quality is likely due to the fact that many flight nurses and paramedics hold other jobs. In this particular case, the decreasing fatigue may simply be due to the fact that they are encouraged to get some rest while on duty and actually do it. Make sure that your agency has fatigue reducing and fatigue avoidance policies and procedures. It’s for your safety as well as your patient’s!

Related posts:

Reference: The effect of shift length on fatigue and cognitive performance in air medical providers. Prehosp Emerg Care (early online, 2013)

How To Remove An Impaling Object

The books all say “transport the patient with an impaling object in place” and “only take the impaling object out in the operating room.” Is this realistic? How do you actually take that knife out?

First, you need to decide if the patient belongs in the OR right now. Are they hemodynamically unstable? Is there obvious arterial bleeding? If so, don’t dawdle. Proceed to the operating room and surgically expose the problem completely.

If the patient is safe to stay in the ED, do what you need to figure out the exact anatomy of the wound (and object). This may involve imaging, usually CT scan. Once the exact position of the object is understood, build an anatomical picture of the situation in your mind. What named arteries might be involved? What other vital structures? 

Given this anatomic information, a decision can then be made regarding the best location for removal. The majority of the time, this will be in the operating room. It is best to obtain optimum surgical exposure prior to pulling it out. In the abdomen, this is easy. However, some areas (skull, sinuses) are tricky and may not require exposure of the end of the tract. Visualization of the remaining hole(s) is key so that bothersome bleeding can be recognized immediately.

The object should be grasped firmly and carefully and removed in one smooth motion. Visual monitoring for five minutes will virtually eliminate the presence of bleeding. If it does occur, then deeper exploration is warranted. In the awake patient, I generally push gently on either side of the entry point prior to and during the pull to provide some sensory distraction. Then I hold pressure on the site for 5 minutes (no peeking) to assure myself that there is no bleeding.

And don’t forget the forensics! Let the police photograph the patient. Handle the object carefully so as not to disturb any fingerprints. Place it carefully in a paper bag, labelled appropriately. And always make sure that a chain of evidence form is properly filled out so it and the object itself can be handed over to the proper authorities.

Where Do You Resuscitate Your Trauma Patients?

Sounds like an easy question, right? In the trauma resuscitation room! But how long can (should) they stay there? Can they leave for testing and come back? As you may expect, there are a lot of variables to consider.

All major trauma patients should start in the resuscitation room. In a few institutions around the world this may be an OR, but this is uncommon. I’m talking about major injuries, multiple fractures, significant potential for blood loss, not the minor stuff. Once the necessary stabilization and evaluation is complete, the patient may need further diagnostics like CT or plain xrays. But once those are done, where does the patient with ongoing resuscitation needs go?

In many cases, they end up back in the ED. Some surgical specialists may want to evaluate them there. They may need minor procedures like suturing or traction pin placement. An ICU bed might not be immediately available. But is this really the right place?

Unfortunately, it isn’t. This class of patient needs ICU care, which includes very close monitoring and ongoing attention to resuscitation. This level of care is just not available in a busy emergency ward. The physicians are seeing other patients, and the nurses may be less familiar with continuously providing this level of care. Arterial line and ICP placement / monitoring is difficult. It’s really not the right place to be.

Bottom line: There are only two places for a complex patient with ongoing resuscitation needs: a surgical ICU or an operating room. The choice depends on whether the patient really needs an operation now. If not, they should be resuscitated in an ICU prior to general anesthesia. The trauma physician must triage all requests for tests or minor procedures from consultants, keeping the overall patient condition in mind. If a particular test will not significantly alter near-term management, it must be postponed. If an ICU bed is not available, the ED resuscitation room may be the only alternative. In this case, a nurse (preferably with ICU experience) must stay with the patient at all times. And an experienced trauma physician should ideally be there as well, if not in person, at least by phone (and quickly). Finally, get the patient to an ICU as soon as humanly possible!