Tag Archives: intubation

Submental Intubation – The Video!

Yesterday, I described a technique for providing a secure yet short-term airway tailored to patients who can’t have a tube in their mouth or nose. Patients undergoing multiple facial fracture repair are probably the best candidates for this procedure.

A picture may be worth a thousand words, but a video is even better. Please note that it is explicit and shows the blow by blow surgical procedure. Of note, it is a quick and relatively simple advanced airway technique.

YouTube player

Related post:

WTF? Submental Intubation?

Here’s one of the weirder procedures I’ve seen in some time. Imagine that you need a definitive airway, but you can’t use the face for some reason (mouth or nose). The usual choice would be a tracheostomy, right? But what if you only need it for a few days? Typically, once placed, trachs must be kept for several weeks before decannulation is safe.

Enter submental intubation. This technique involves passing an endotracheal tube through the anterior floor of the mouth, and then down the airway. This leaves the facial bones, mandible, and skull base untouched.

The technique is straightforward. After initially intubating the patient  orotracheally, a 1.5cm incision is created just off the midline in the submental area. Using a hemostat, all layers are penetrated, entering the oropharynx just lateral to the tongue. A 1.5cm incision is then made parallel to the gum line of the lower teeth. The connector at the proximal end of the endotracheal tube is removed, and a hemostat is placed through the chin incision again. The proximal end of the ET tube is grasped from within the pharynx and pulled out through the skin, leaving the distal (balloon) end in the trachea. The connector is reinserted, and the tube is then hooked up to the anesthesia circuit again. The tube is secured using a stitch under the chin. After a final position check, the surgical procedure can commence.

There are a number of variations on this technique, so you may encounter slightly different descriptions. The tube can be pulled at the end of the procedure, or left for a few days to ensure safe extubation, if needed.

A small series of 10 patients undergoing this technique was reviewed, and there were no short or long term problems. Scarring under the chin was acceptable, and was probably less noticeable than a trach scar.

Bottom line: This is a unique and creative method for intubating patients with very short-term airway needs while their facial fractures are being fixed. Brilliant idea!

Reference: Submental intubation in patients with panfacial fractures: a prospective study. Indian J Anaesth 55(3):299-304, 2011.

Photo source: internet

How To: Secure An Endotracheal Tube To… Nothing!

Several decades ago I took care of a patient who posed an interesting challenge. He had been involved in an industrial explosion and had sustained severe trauma to his face. Although he was able to speak and breathe, he had a moderate amount of bleeding and was having some trouble keeping his airway clear.

Everyone frets about getting an airway in patients who have severe facial trauma. However, I find it’s usually easier because the bones and soft tissue move out of your way. That is, as long as you can keep ahead of the bleeding to see your landmarks.

In this case, the intubation was easy. The epiglottis was visible while standing above the patient’s head, so a laryngoscope was practically unnecessary! But now, how do we secure the tube so it won’t fall out? Sure, there are tube-tamer type securing devices available, but what if they are not available to you? Or this happened in the field? Or it was in the 1980’s and it hadn’t been invented, like this case?

The answer is, create your own “skin” to secure the tube to. Take a Kerlix-type stretchable gauze roll and wrap it tightly around their head. Remember, they are sedated already and they can breathe through the tube. This also serves to further slow any bleeding from soft tissue. Once you have “mummified” the head with the gauze roll, tape the tube in place like you normally would, using the surface of the gauze as the “skin.”

Be generous with the tape, because the tube is your patient’s life-line. Now it’s time for the surgeons to surgically stabilize this airway, usually by converting to a tracheostomy. 

Related posts:

The Three Strikes And You’re Out Airway Rule

Rapid airway control is key in critically injured trauma patients. But too many times, I’ve seen trauma professionals take far too much time to establish one. Here’s a good rule of thumb to use in these situations.

After pre-oxygenating the patient, your first pro gets a crack at it. They generally have the most time available, often 3-5 minutes before sats begin to drop.

In the unlikely situation that they are not successful, strike 1. Stop trying and resume bagging the patient. At this point, someone (trauma surgeon, lead medic) must get the crich set out. Then the next most experienced intubator gets a shot.

If they are not successful, strike 2. Resume bagging and open the crich set.

The most experienced intubator now gets their chance, using any advanced technology available. No success even now? Strike 3, use the crich set!

Bottom line: We should never allow more than 3 airway attempts, and sometimes clinical conditions will dictate fewer tries. Examples that come to mind are severe brain injury patients (hypoxia is bad) and patients who do not recover from oxygen desaturation when they are bagged. Don’t lose track of time and the number of attempts!

Trauma Mythbusters: Spinal Cord Injury From Airway Management

Airway management is one of the most anxiety provoking procedures performed by trauma professionals. The main fear is that the airway will be lost during attempts to secure it and patient demise will soon follow. Add some facial fractures, bleeding, and an “unfavorable body habitus”, and the average prehospital or ED provider is really on edge.

The next most common fear is that providing a definitive airway in a patient with a known (or even suspected) cervical spine injury could cause a catastrophic neurologic injury. This was first addressed back in 1989 (before the time of video laryngoscopy, and when flexible scopes were rarely available in the ED). The authors found no verifiable reports of such an injury in the entire English literature

Over the years, a few case reports have cropped up. As in so much of the medical literature, causality is hard to prove. The patient was normal before anesthesia, and afterwards they were not. Had to be the intubation, right?

Not so fast! Let’s break it down and look at what we do know. Biomechanical studies have shown that the manipulation that occurs in direct laryngoscopy isn’t as bad as it looks. Studies in uninjured models are enlightening (minimal movement with blade insertion, slight rotational movements with blade elevation, and a little more rotation during the intubation). Most of this (slight) movement occurs from occiput to C2, with little motion at all at C3 and below.

But that was on an uninjured model. What about ones that simulate an injured spine? Specifically an injury in the upper spine area that we know moves?

  • Cricoid pressure caused no appreciable changes in the spine
  • Chin lift and jaw thrust reduced space available for the cord (SAC) by 1 and 2.5mm, respectively, and caused an angulation of about 4-5 degrees
  • SAC narrowed by only 1.5mm, even with maximum flexion and extension
  • Oral and nasal intubation narrowed SAC by 1.6mm, and resulted in a maximum of 2.5 degrees of rotation
  • Video laryngoscopy results in about half of the rotational movement of direct laryngoscopy
But what about these sporadic reports of neurologic deficits after intubation? What is often neglected is that spinal blood flow and long-term neck positioning have a major impact on cord function. Even relatively mild malpositioning of the cervical spine for extended periods during an OR case have been documented. 

Bottom line: From a mechanical standpoint, even in unstable spine models, the maneuvers we use in preparation for intubation cause more movement of the spine than does the intubation procedure itself. The true number of spinal cord injuries actually (and provably) caused by intubation approaches zero. The literature suggests that video laryngoscopy results in less overall movement during intubation, but it doesn’t seem to have an impact on cord injury (you can’t get less than zero). 

References:

  • Spinal cord injury and direct laryngoscopy – the legend lives on. Br J Anesth 84(6):705-709.
  • Airway management in adults after cervical spine trauma. Anesthesiology 104(6):1293-1318, 2006.