Category Archives: Performance Improvement

Does The Tertiary Survey Really Work?

Delayed diagnoses / missed injuries are with us to stay. The typical trauma activation is a fast-paced process, with lots of things going on at once. Trauma professionals are very good about doing a thorough exam and selecting pertinent diagnostic tests to seek out the obvious and not so obvious injuries.

But we will always miss a few. The incidence varies from 1% to about 40%, depending on who your read. Most of the time, they are subtle and have little clinical impact. But some are not so subtle, and some of the rare ones can be life-threatening.

The trauma tertiary survey has been around for at least 30 years, and is executed a little differently everywhere you go. But the concept is the same. Do another exam and check all the diagnostic tests after 24 to 48 hours to make sure you are not missing the obvious.

Does it actually work? There have been a few studies over the years that have tried to find the answer. A paper was published that used meta-analysis to figure this out. The authors defined two types of missed injury:

  • Type I – an injury that was missed during the initial evaluation but was detected by the tertiary survey.
  • Type II – an injury missed by both the initial exam and the tertiary survey

Here are the factoids:

  • Only 10 observational studies were identified, and only 3 were suitable for meta-analysis
  • The average Type I missed injury rate was 4.3%. The number tended to be lower in large studies and higher in small studies.
  • Only 1 study looked at the Type II missed injury rate – 1.5%
  • Three studies looked at the change in missed injury rates before and after implementation of a tertiary survey process. Type I increased from 3% to 7%, and Type II decreased from 2.4% to 1.5%, both highly significant.
  • 10% to 30% of missed injuries were significant enough to require operative management

Bottom line: In the complex dance of a trauma activation, injuries will be missed. The good news is that the tertiary survey does work at picking up many, but not all, of the “occult” injuries. And with proper attention to your patient, nearly all will be found by the time of discharge. Develop your process, adopt a form, and crush missed injuries!

Related posts:

Reference: The effect of tertiary surveys on missed injuries in trauma: a systematic review. Scand J Trauma Resusc Emerg Med 20:77, 2012.

Print Friendly, PDF & Email

Dealing With Trauma Flow Sheet Documentation Problems

Over the years, I’ve commented a number of times on paper vs electronic trauma flow sheet. For those of you who somehow missed it, let me recap. Don’t use an electronic trauma flow sheet yet if you can possibly avoid it!

I look at the flow sheet as having two phases, input and output. The input phase occurs as data is being recorded on the sheet, hopefully in real time as events occur during the trauma resuscitation and its aftermath. The output phase consists of a human reviewing the completed flow sheet and analyzing the events and timing for performance improvement (PI) purposes.

The electronic trauma flow sheet has major problems in both phases. But the good, old-fashioned paper sheet isn’t perfect either. It is subject to problems during the input phase. The most common issue is incomplete documentation. I’ve seen so many trauma programs with ongoing issues in this area, and they struggle to find ways to improve or eliminate the missing data.

Here are a few tips you should consider:

  • Make sure your paper flow sheet is well-designed. Data items should not be scattered randomly over several pages. Primary survey items should be grouped together. Medications must have their own block. Diagnostic tests performed (not ordered) should be in the same area. Make sure that the narrative block that typically has vital signs and free-form text about what is happening is large enough, with enough room to write comfortably. There are so many good trauma flow sheets out there already. Borrow a few to see if your program can adopt some of the organizational concepts found on them.
  • Identify the commonly incomplete items at your program, then redesign the flow sheet to cluster them together in one prominent spot on it. Common missed items include patient temperature, time of diagnostic tests, and admitting destination  and time the patient leaves the emergency department.
  • If you have only a few problem data points and don’t want to totally redesign your form, manually highlight those blocks with an old-fashioned highlighting pen. This only works if you are highlighting a few items. Any more than two or three, and the scribe will start to ignore all of them. The fancy colored blocks will draw the eye and remind them to ask for the data.
  • Perform an accuracy review of the sheet soon after the resuscitation, ideally before the end of the nursing shift. And since the scribes are typically emergency nurses, it should be their responsibility. Not the trauma program’s. The ED nurses should take responsibility for their own work, and develop their own program to self-correct any deficiencies.

Do you have any suggestions or best practices that have worked for you? Please comment or tweet!

Related posts:

Print Friendly, PDF & Email

Value Of The “Delay To Operating Room” Trauma PI Filter: Part 2

Yesterday, I discussed a paper that tried to show that the “delay to OR” trauma performance improvement (PI) filter was not cost effective. As I mentioned, I’m dubious that the outcomes and information reviewed could realistically demonstrate this.

Today, I’m going to list the parts of the system that this PI filter helps to monitor:

  • Was the patient appropriately triaged as a trauma activation?
  • Was the trauma surgeon called / involved in a timely manner?
  • Was an appropriate physical exam carried out?
  • If needed, was the CT scanner accessible?
  • Did the surgeon make an appropriate clinical decision?
  • If needed, did the backup trauma surgeon arrive in a timely manner?
  • Were there any transport delays to the OR?
  • Was an OR room promptly available?
  • Did the OR backup team arrive within the required time, if needed?
  • Were anesthesia services promptly available?
  • If a failure of nonoperative management occurred:
    • Was the practice guideline followed?
    • Were repeat vitals and physical exam performed and documented?
    • Did any of the other issues listed above occur?

And you may be able to think of even more!

Bottom line: As you can see, this seemingly innocuous filter tests many components within the trauma center. And even if one particular patient who triggers the “delay to OR” filter is lucky enough to escape unharmed, many of the areas listed above can harm other patients who may not trigger it. Actively looking for these issues and fixing them makes your entire trauma program better!

Related post:

Print Friendly, PDF & Email

Value Of The “Delay to Operating Room” Trauma PI Filter: Part 1

This post is a little longer than usual. However, if you have any interest in trauma PI, I recommend you read it through to the very end.

I’ve written a lot about trauma performance improvement (PI) over the years. As many of you know, good PI is complicated yet necessary to run a trauma center that provides optimal care. There are many areas of trauma care that are scrutinized by the PI program on a daily basis. Some of those items are termed “audit filters”, and consist of specific action criteria. If not met, the filter is triggered and the PI program must investigate it.

One of those time-honored filters is “delay to operating room.” Actually, there are two parts to it. One is “trauma laparotomy > 4 hours after patient arrival.” And the other is “trauma laparotomy > 1 hour after patient arrival if hypotensive.”

A paper was recently published questioning the value of the first filter. The contention is that it takes time and money for someone (trauma registrar, nurses, or APPs) to recognize and record the violation, and more time for the trauma program manager, trauma medical director, and Trauma PI Committee to analyze and discuss.

The authors were concerned that this time and money may be mis-spent if the filter violation doesn’t have any real impact on clinical care and outcomes. They looked at 9 years of registry and PI data on initial trauma laparotomies (not reoperations) at their Level I center. They specifically compared the incidence of mortality, complications, and identification of opportunities for improvement in the PI program.

Here are the factoids:

  • 472 patients underwent primary trauma laparotomy during the study, and 23% were flagged as delay to OR (!)
  • There was no difference in mortality or complications between delayed and non-delayed patients
  • There was a trend toward longer hospital length of stay in the delay group (p=0.05)
  • Transfer to a higher level of care was significantly higher (7%) in the delayed patients vs non-delayed (2%).  The authors do not explain this further, although it usually means an unanticipated transfer from ward to ICU.
  • Other audit filters were triggered significantly more often in the delay group, including failed nonoperative management of spleen or liver, delay in diagnosis, and delay in presentation
  • There were significant differences in which surgeons experienced delay to OR, although the incidence of complications was not different

Bottom line: The authors interpret this information one way, and state their belief that these types of filters may no longer be relevant at well-established trauma centers. However, I disagree!

Here is my rationale:

  • The study assumes that deaths, complications, and the presence of identified opportunities for improvement are sensitive enough outcomes. They are not. Hospital length of stay is the only measure that the authors examined that might be related, and it was very close to being significantly higher. And in this day and age of team care, it’s very difficult to say exactly who or what did or did not produce a complication.
  • It also assumes that the adverse outcome would only occur to the involved patient. What if an OR scheduling problem occurred in the audited case, but the patient’s injuries were not severe enough that there was any impact? But the next patient was more severely injured, and the same type of OR scheduling delay occurred. And in this case, significant and severe complications occurred even though they made it into the room in 3 hours and 45 minutes. System problems can hurt other patients, too!
  • The entire study is based on the assumption that the trauma center’s trauma PI program was very effective during the study period. Yet a delay to OR occurred in nearly a quarter of all cases. This is higher than most other centers. It is notoriously difficult to get a sense of how strong the PI program is, other than via verification visits.
  • It also suggests that some practice guidelines either need to be implemented or updated. The “delay to OR” filter was associated with other audit filter violations, especially with failure in nonop management of solid organs and diagnosis delay. Was the approach to liver/spleen management and diagnostic imaging consistent and effective?
  • The differences in delay to OR among the surgeons (range 12-38%) is also unusual. These high and variable numbers suggest the need for further analysis of their cases and performance.

This illustrates my request that you always read the paper, not just the title and conclusion, and think hard about it. I believe that the authors have shown that use of this PI audit filter didn’t make a difference in the outcomes they measured. However, I don’t think they looked at all the right ones. 

My experience has been that this filter is extremely valuable in identifying and fixing system problems. Tomorrow, I’ll provide a list of (nearly) everything that it can measure, and add a few more comments. Click here to read it.

Related posts:

Reference: “Delay to operating room: fails to identify adverse outcomes at a Level I trauma center. J Trauma 82(2):334-337, 2017.

Print Friendly, PDF & Email

The Cribari Grid And Over/Undertriage

I’ve spent some time discussing undertriage and overtriage. I frequently get questions on the “Cribari grid” or “Cribari method” for calculating these numbers. Dr. Cribari is a previous chair of the Verification Review Subcommittee of the ACS Committee on Trauma. He developed a table-format grid that provides a simplified method for calculating these numbers.

But remember, the gold standard for calculating over- and undertriage is examining each admission to see if they met any of your trauma activation triage criteria. The Cribari method is designed for those programs that do not check these on every admission. It is a surrogate that allows you to identify patients with higher ISS that might have benefited from a trauma activation.

So if you use the Cribari method, use it as a first pass to identify potential undertriage. Then, examine the chart of every patient in the undertriage list to see if they meet any of your activation criteria. If not, they were probably not undertriaged. However, you must then look at their injuries and overall condition to see if they might have been better cared for by your trauma team. If so, perhaps you need to add a new activation criterion. And then count that patient as undertriage, of course.

I’ve simplified the calculation process even more and provided a Microsoft Word document that automates the task for you. Just download the file, fill in four values in the table, update the formulas and voila, you’ve got your numbers! Instructions for manual calculations are also included. Download it by clicking the image below or the link at the end of this post.

cribarigrid

Download the calculator by clicking here

Related posts:

Print Friendly, PDF & Email