Category Archives: Performance Improvement

NFTI Scoring Revisited – Not Just For Triage Calculations?

Earlier this week, I wrote about a new tool for monitoring over- and under-triage for trauma programs. In place of using ISS as the metric for triggering review, the Need For Trauma Intervention (NFTI) is based on resource utilization during the initial portion of the hospital stay.

The original study was performed at a single Level I trauma center in Dallas. The authors then rolled it out as a multicenter study to test its overall reliability. However, the authors changed the focus in this work. The original paper focused on the development of a new tool to improve upon the evaluation of proper decisions to activate the trauma team. The authors have now extrapolated that their system predicts when a patient’s physiologic reserve is depleted. In turn, this should be the indicator that a trauma activation is needed.

The authors performed a convenience sample of 38 trauma centers around the US. Of these, 25 were adult only, 3, pediatric only, and 10 were combined adult/peds centers. Two years of data were collected from each. Injury severity score (ISS) and revised trauma score (RTS) were calculated for all patients. Outcomes analyzed were discharge location (home vs ongoing care), complications, and length of stay.

A complicated statistical model was adopted that evaluated the associations between higher ISS (> 15), lower RTS (< 7.84) and any positive NFTI factor. To refresh your memory, here’s the list of NFTI factors:

  • blood transfusion within 4 hours of arrival
  • discharge from ED to OR within 90 minutes of arrival
  • discharge from ED to interventional radiology (IR)
  • discharge from ED to ICU AND ICU length of stay at least 3 days
  • require mechanical ventilation during the first 3 days, excluding anesthesia
  • death within 60 hours of arrival

Here are the factoids regarding the new study:

  • Nearly 90,000 patient encounters were submitted over a 2 year period
  • The risk of experiencing a complication increased by 9x if NFTI+, 6x for ISS>15, and 5x for RTS<7.84
  • Odds of discharge to a continuing care facility was about 2.5x more likely if any of the three thresholds were met
  • Length of stay was significantly better predicted by NFTI

The authors conclude that NFTI was a better indicator of major trauma when compared to ISS and RTS. They claim that it is the best single definition because the model fit is better and that it has stronger associations with complications, discharge location, and length of stay.

Bottom line: Hmm, I’m not so sure. It’s a great idea and does allow us to drill down on those patients most in need of high-level trauma center resources. The authors admit that each tool (ISS, RTS, and NFTI) identifies some important patients that the others do not. It just seems that more of them tend to be identified by NFTI.

I always worry when complicated statistical models are needed to show these differences. This is a complex concept, so more sophisticated models may indeed be needed by virtue of the data that needs to be analyzed. Overtriage can be easily identified in many cases when NFTI- patients trigger a full trauma activation. Obvious undertriage occurs in NFTI+ patients with no activation.

But NFTI still does not obviate the need to search harder for undertriage. What about the case of a stab to the chest in the “box” region, who does not end up with a cardiac injury or hemo/pneumothorax? They would be NFTI- but mechanism positive.

How do we learn from NFTI+ patients who did not have a trauma activation. Just like using the Cribari grid, we must look at each individual chart and ask two questions:

  1. Did this patient meet any of our highest level activation criteria? If so, it is frank undertriage.
  2. If not, do we need a new criterion to catch this in the future?

So NFTI is a somewhat improved version of the Cribari grid. Sure, it can predict complications better, as well as length of stay (which may be related). But not discharge location, as claimed. As for being an indicator of depleted patient reserve, I think that’s just speculation at this point. Both tools can be used to automatically generate data for review from the trauma registry. And both will have some false negatives and positives.

My recommendation: This paper provides an academic argument that NFTI is somewhat better than the Cribari method. Now it’s time to get practical. Some enterprising trauma centers need to do a study where they use both systems side by side. How many charts for review are generated by each? How many false negatives and positives are there? How much work (abstractor / registrar time) is needed to analyze and act on the results? This is the only way we can answer the question of which one is better in the real world.

Reference: Rethinking the definition of major trauma: The Need For Trauma Intervention outperforms Injury Severity Score and Revised Trauma Score in 38 adult and pediatric trauma centers. J Trauma publish ahead of print, 2019.

Print Friendly, PDF & Email

NFTI: A Nifty Tool To Replace The Cribari Grid?

In my last post, I reviewed the use of the Cribari grid for evaluating over- and under-triage at your trauma center.  This technique has been a mainstay for over a decade, but has its shortcomings. The most important one is that it relies only on the Injury Severity Score (ISS) to judge whether some type of mistriage occurred.  As you know, the ISS is usually calculated after discharge, so it can only be applied after the fact.

Two years ago, the group at Baylor University in Dallas sought to develop an alternate method of determining who needed a full trauma team activation. They chose resource utilization as their surrogate to select these cases. They reviewed 2.5 years of their own registry data (Level I center).  After several iterations, they settled on six “need for trauma intervention” (NFTI) criteria:

  • blood transfusion within 4 hours of arrival
  • discharge from ED to OR within 90 minutes of arrival
  • discharge from ED to interventional radiology (IR)
  • discharge from ED to ICU AND ICU length of stay at least 3 days
  • require mechanical ventilation during the first 3 days, excluding anesthesia
  • death within 60 hours of arrival

Patients who had at least one NFTI criterion were considered candidates for full trauma activation, and those who met none were not. Here are the factoids for this study:

  • There were a total of 2260 full trauma activations and 2348 partial activations during the study period (a little over 900 per year for each level)
  • Roughly 2/3 of full activations were NFTI +, and 1/3 were NFTI –
  • For partial activations, 1/4 were NFTI + and 3/4 were NFTI –
  • Only 13 of 561 deaths were NFTI – and all had DNR orders in place

The authors concluded that NFTI provides an assessment of both anatomy and physiology using only measures of early resource utilization. They believe that it self-adjusts for age, frailty, and comorbidities, and that it is a simple and effective tool for identifying major trauma patients.

Bottom line: This is an elegant attempt to improve upon the simple (yet admittedly flawed) Cribari matrix method for assessment of major trauma patient triage. It was thoughtfully designed and evaluated at this one center. The authors recognize that it is based on retrospective data, but so is the Cribari technique. 

I believe that it may be an adjunct to Cribari. The matrix identifies gross under- and over-triage, but still requires the trauma program to review the outliers to see if mistriage actually occurred. It is basically a “first pass” that seeks to over-identify potential problem patients.

NFTI is similar, but it focuses on those patients who really should have been a full trauma activation due to their early need for critical resources to deal with their injuries. But is it enough? In my next post, I’ll review the follow-on paper from this group as they apply it to multiple trauma centers. And I’ll add some final thoughts on the subject.

Reference: Asking a Better Question: Development and Evaluation of the Need For Trauma Intervention (NFTI) Metric as a Novel Indicator of Major Trauma. J Trauma Nursing 24(3):150-157, 2017.

Print Friendly, PDF & Email

The Cribari Grid And Over/Undertriage

Any trauma performance improvement professional understands the importance of undertriage and overtriage.  Overtriage occurs when a patient who does not meet trauma activation criteria gets one anyway. And undertriage is the converse, where no activation is called despite criteria being met. As you may expect, the latter is much more dangerous for the patient than the former.

I frequently get questions on the “Cribari grid” or “Cribari method” for calculating these numbers. Dr. Chris Cribari is a previous chair of the Verification Review Subcommittee of the ACS Committee on Trauma. He developed a table-format grid that provides a simplified method for calculating these numbers.

But remember, the gold standard for calculating over- and undertriage is examining each admission to see if they met any of your trauma activation triage criteria. The Cribari method is designed for those programs that do not check these on every admission. It is a surrogate that allows you to identify patients with higher ISS that might have benefited from a trauma activation.

So if you use the Cribari method, use it as a first pass to identify potential undertriage. Then, examine the chart of every patient in the undertriage list to see if they meet any of your activation criteria. If not, they were probably not undertriaged. However, you must then look at their injuries and overall condition to see if they might have been better cared for by your trauma team. If so, perhaps you need to add a new activation criterion. And then count that patient as undertriage, of course.

I’ve simplified the calculation process even more and provided a Microsoft Word document that automates the task for you. Just download the file, fill in four values in the table, update the formulas and voila, you’ve got your numbers! Instructions for manual calculations are also included. Download it by clicking the image below or the link at the end of this post.

cribarigrid

Download the calculator by clicking here

In my next post, I’ll examine how the NFTI score (need for trauma intervention) fits into the undertriage/overtriage calculations.

Related posts:

Print Friendly, PDF & Email

Nuances Of The “Unanticipated Mortality” Classification

All trauma centers verified by the American College of Surgeons (ACS) are required to classify trauma patient deaths into one of three categories: unanticipated mortality, mortality with opportunity for improvement, or mortality without opportunity for improvement. I’ve provided some details about each of those over the past several posts. But I do want to provide a little more detail for the much dreaded “unanticipated mortality.”

You may have noticed that unanticipated mortality does not seem to come in the same two flavors as the anticipated mortality: with and without opportunity for improvement. Why is this? Does this imply that all unanticipated mortalities have some opportunity or another? I actually used to think so.

But over time, I’ve changed my mind. It is true that the vast majority of unanticipated mortalities involve one, and many times, several opportunities that may improve the outcome for similar patients in the future. But I have personally seen at least two that did not.

How can this be, you say? Let me give you a far-fetched example. A healthy young male is involved in a car crash, sustaining fractures of a few ribs which are very painful. He is admitted for pain control, and is treated with your usual regimen of analgesics, mobilization, and pulmonary toilet. He admits to no significant medical or surgical history and is taking no medications. As he is sitting in his room waiting for his ride on the day of discharge, a small meteorite plunges through his window and strikes him in the head, killing him instantly.

So where’s the opportunity? Put meteorite shielding around your entire hospital? I think not. Don’t be ridiculous, you say, that’s not a realistic example. But what if, on the day of discharge, he stands up in his room and keels over in PEA arrest? An autopsy is performed, and a massive pulmonary embolism is identified. And let’s say that this patient somehow met your DVT prophylaxis criteria and he was receiving appropriate management per your practice guideline. And when you convey these findings to the family, they seem to recall a pattern of pulmonary embolism deaths and DVT complications in other family members. But nobody mentioned this to you during the history and physical exam. And you treated them exactly according to your protocol.

So what do you think now? Is there an opportunity? I still think not! But you must still pick apart every bit of the patient’s care, trying to identify anything that was not done according to plan or protocol that may have led to this (extremely) adverse outcome. But be aware that over your career as a trauma professional, you will likely run into one or more of these cases that are unanticipated but completely nonpreventable!

Print Friendly, PDF & Email

Trauma Mortality Nomenclature: Part 3

Time to (nearly) finish up this series on trauma mortality! We discussed the two types of anticipated mortality previously, now it’s time for the final (and worst) one.

Old nomenclature: preventable death
New nomenclature: unanticipated mortality

Note the subtle difference. The old name presumes you could have done something about it, which can lead to legal issues in some cases. The new one implies that death was unexpected, but does not presume that it could have been prevented. However, in most cases analysis shows that it could have.

Any unanticipated mortality should launch a full investigation from the trauma performance improvement program. In some cases, hospital quality may need to get involved. A root cause analysis may be indicated, depending on how many factors are involved. These cases must be discussed by the multidisciplinary trauma PI committee, at a minimum. It’s essential that everyone involved do their homework and become familiar with every aspect of care so that a meaningful analysis can occur at the meeting.

Trauma center reviewers will expect to see detailed documentation of the analysis in the PI committee minutes. And unless the death was a complete and unpreventable surprise there should be new protocols, policies and practice changes apparent. If these are not present, expect major reverification issues for your trauma center.

Is there an appropriate ratio of the three types of mortality? Obviously, there is a fair amount of variability. But after years of doing reviews, I can offer some guidelines. Here’s my 100:10:1 rule of thumb:

  • 100 cases – mortality without opportunity for improvement
  • 10 cases – mortality with opportunity for improvement
  • 0-1 case – Unanticipated mortality

If your hospital’s numbers are outliers in any group, your clinical care and performance improvement program will get extra scrutiny. If all your cases are mortalities without OFI, then your PI process is too lax. This is a complex business, and there a many ways to improve our care. If your mortality with OFI cases are too frequent, your threshold for improvement may be set too low (see my previous post). If you have more than 1 or 2 unanticipated mortalities, then there may be some serious care quality issues.

Bottom line: When reviewing trauma mortality, be realistic but brutally honest. We learn from the mistakes we make. But by adhering to the process, you should never make the same mistake twice.

In my next post, I’ll provide some additional thoughts on unanticipated mortality.

Print Friendly, PDF & Email