Best Of EAST #5: Keeping Blood From Going Bad

What goes around comes around. Whole blood was the only transfusion product available until about 60 years ago, when the whole blood banking system switched to fractionating blood products. Now we are discovering the benefits of whole blood again. The military has been using fresh whole blood for some time. As civilians, we’ve had less access to whole blood. But once obtained, it must be used within 21 days. This is half the storage time for the usual bag of packed red cells, and may result in some waste of this valuable product.

The group at the University of Cincinnati wondered if fractionating and preserving an expiring bag of whole blood might extend the life of those red cells. They obtained 21- day old (expiring) whole blood and separated the red cells, preserving them using the usual technique. They then analyzed the cells weekly until expiration at 42 days for viability, storage damage and coagulation status.

Here are the factoids:

  • The number of units tested was not listed in the abstract
  • Damage from storage of the extracted red cells appeared to be consistent with normal damage expected from packed red blood cells
  • When mixed with plasma with a 1:1 ratio, clotting time, clot formation time, and maximum clot formation did not change as the salvaged cells aged

The authors concluded that the salvaged cells aged just like packed RBCs. They suggested that this may provide a method for extending the life of whole blood and allowing transfusion into patient in hemorrhagic shock.

My comment: This is an intriguing paper and suggests a way of extending the life and use of valuable whole blood. It appears to have been well done and analyzes standard markers of red cell dysfunction. However, the authors did not provide the number of units they tested. This is critical, since they are trying to show that the values tested are statistically the same (no difference between packed RBCs and those salvaged from whole blood). Some of their comparison numbers appear very different, but are not statistically significant. I worry that the number of units tested might be too small to show a difference.

Here is my question for the authors and presenter:

  1. Exactly how many units of whole blood did you use in this study? And did you do a power analysis to ensure that you don’t have a Type II error (false negative) with the “not significant” results?

This is a great idea and stands to save money and stretch our supply of blood!

Reference: Save it – don’t waste it! Maximizing utilization of erythrocytes from previously stored whole blood. EAST Annual Assembly abstract #6, 2020.