Massive Transfusion: What’s The Right Ratio?

In my last post, I analyzed a survey that studied the massive transfusion protocol (MTP) practices of academic Level I trauma centers in the US. What centers do is one thing. But what does the literature actually support? A group from Monash University in Melbourne, Australia and the National Health Service in the UK teamed up to review the literature available through 2016 regarding optimal dose, timing, and ratio of products given during MTP.

One would think that this was easy. However, the search for high quality ran into the usual roadblock: the fact that there is not very much of it. The authors scanned MEDLINE for randomized, controlled studies on this topic, and found very few of them. Out of 131 articles that were eligible, only 16 were found to be suitable for inclusion, and 10 of them were still in progress. And only three specifically dealt with the ratio question. Even they  were difficult to compare in a strict apples to apples fashion.

Here are the factoids that could be gleaned from them:

  • There was no difference in 24-hour or 30-day mortality between a ratio of 1:1:1 (FFP:platelets:RBC) vs 1:1:2
  • However, a significantly higher number of patients  achieved hemostasis in the 1:1:1 group (86% vs 78%)
  • There was no difference in morbidity or transfusion reactions in the two groups
  • One study compared 1:1 component therapy with whole blood transfusion and found no difference in short-term or long-term mortality or morbidity

Bottom line: As usual, the quality of available data is poor if one limits the field to randomized, controlled studies. Ratios of 1:1:1 and 1:1:2 appear to be equally effective given the limited information available. A number of papers not included in this review (because of their less rigorous design) do seem to indicate that higher ratios of RBC (1:3-4) appear to be detrimental. And as time passes, more and hopefully better studies will be published.

What does this all mean for your MTP? Basically, we still don’t know the best ratio. However, it is recommended that your final ratios of FFP:RBC end up somewhere between 1:1 and 1:2. The only way to ensure this is to set up your MTP coolers so the the ratio of product they contain is better than 1:2. This means more plasma than 1 unit per 2 units of red cells. 

If you set it at the outside limit of 1:2, then that is the best ratio you can ever get assuming everything goes perfectly. However, if you have to thaw frozen plasma, use too much emergency release PRBC before activating MTP, or someone cherry-picks the coolers to transfuse what they think the patient needs, the ratios will quickly exceed this boundary.

So be sure to load your coolers with ratios that are closer to 1:1 to ensure that your final ratios once MTP is complete are what you want them to be. And monitor the final numbers of every one of your MTP activations through your trauma performance improvement program so you know what your patients are really receiving.

Reference: Optimal Dose, Timing and Ratio of Blood Products in Massive
Transfusion: Results from a Systematic Review. Transfusion Med Reviews 32:6-15, 2018.