Category Archives: General

Advanced Needle Thoracostomy

In the past, I’ve written about the merits of needle vs finger thoracostomy. One of the arguments against needle thoracostomy is that it may not reach into the chest cavity in obese patients. As I mentioned yesterday, use the right needle!

Obviously, the one on top isn’t going to get you very far. The bottom one (10 gauge 3 inch) should get into most pleural spaces.

But what if you don’t have the right needle? Or what if the patient is massively obese and the longer needle won’t even reach? Pushing harder may seem logical, but it doesn’t work. You might be able to get the needle to reach to the pleural space, but the catheter won’t stay in it.

Here’s the trick. First, make the angiocatheter longer by hooking it up to a small (5 or 10cc) syringe. Now prep the chest over your location of choice (2nd intercostal space, mid-clavicular line or 5th intercostal space, anterior axillary line) and make a skin incision slightly larger than the diameter of the syringe. Now place the syringe and attached needle into the chest via your incision. It is guaranteed to reach the pleura, because you can now get the hub of the catheter down to the level of the ribs. Just don’t forget to pull out the catheter once you’ve placed the chest tube!

Related posts:

Print Friendly, PDF & Email

The Right Way to Treat Tension Pneumothorax

Tension pneumothorax is an uncommon but potentially lethal manifestation of chest injury. An injury to the lung occurs that creates a one-way valve effect, allowing a small amount of air to escape with every breath. Eventually the volume becomes so large as to cause the lung and mediastinum to push toward the other side, with profound hypotension and cardiovascular collapse.

The classic clinical findings are:

  • Hypotension
  • Decreased or absent breath sounds on the affected side
  • Hyperresonance to percussion
  • Shift of the trachea away from the affected side
  • Distended neck veins

You should never diagnose a tension pneumothorax with a chest xray or CT scan, because the diagnosis is a clinical one and the patient may die while these procedures are carried out. Having said that, here’s one:

image

The arrow points to the completely collapsed lung. Note the trachea bowing to the right.

As soon as the diagnosis is made, the right thing to do is to “needle the chest.” A large bore angiocath should be placed in the second intercostal space, mid-clavicular line, sliding right over the top of the third rib. The needle should then be removed, leaving the catheter.

The traditional large bore needle is 14 gauge, but they tend to be short and flimsy. They may not penetrate the pleura in an obese patient, and will probably kink off rapidly. Order the largest, longest angiocath possible and stock them in your trauma resuscitation rooms.

image

The top catheter in this photo is a 14 gauge 1.25 inch model. The bottom (preferred at Regions) is a 10 gauge 3 inch unit. Big difference! 

The final tip to treating a tension pneumothorax is that a chest tube must be placed immediately after inserting the needle. If the patient is on a ventilator, the positive pressure will slowly expand the lung. But if they are breathing spontaneously, the needle will change the tension pneumothorax into a simple open pneumothorax. Patients with other cardiovascular problems will not tolerate this for long and may need to be intubated if you dawdle.

Related post:

Print Friendly, PDF & Email

How Big Should Your Trauma Bay Be?

Trauma resuscitation rooms vary tremendously. They can range from very spacious…

to very tight…

Most trauma bays that I have visited were somewhere between 225 and 300 square feet (21-28 sq meters), although some were quite large (Rashid Hospital in Dubai at nearly 50 sq meters!).

Interestingly, I did manage to find a set of published guidelines on this topic. The Facility Guidelines Institute (FGI) develops detailed recommendations for the design of a variety of healthcare facilities. Here are their guidelines for adult trauma bays:

  • Single patient room: The clear floor area should be 250 sq ft (23 sq m), with a minimum clearance of 5 feet on all sides of the patient stretcher.
  • Multiple patient room: The clear floor area should be 200 sq ft (18.5 sq m) with curtains separating patient areas. Minimum clearance of 5 feet on all sides of the patient stretcher should be maintained.

The FGI “clear floor area” corresponds to my “Trauma Bay Working Area”, which is the area that excludes all the carts, cabinets, and countertops scattered about the usual trauma room. California’s guideline of 280 sq feet seems pretty reasonable as the “Trauma Bay Total Area”, if you can keep your wasted space down to about 30 sq feet.

Bottom line: Once again, don’t try to figure out everything from scratch. Somebody has probably already done it (designed a trauma bay, developed a practice guideline, etc). But remember, a generic guideline or even one developed for a specific institution may not completely fit your situation. In this case, the FGI guidelines say nothing about the trauma team size, which is a critical factor in space planning. Use the work of others as a springboard to jump start your own efforts at solving the problem.

Related posts:

Print Friendly, PDF & Email

July Newsletter Released!

The July newsletter is now available! Click the link below to download. This month’s topic is “Malpractice and Trauma, part 2”.

In this issue you’ll find articles on:

  • Does open discussion at M&M increase lawsuits?
  • Is family presence during trauma resuscitation risky?
  • EMS liability litigation
  • Basics of nursing malpractice
  • Forensic nursing

Subscribers received the newsletter last weekend. If you want to subscribe to get early delivery in the future (and download back issues), click here.

Click here to download newsletter.

Print Friendly, PDF & Email

Trauma Mythbusters: Bathing/Showering And Wound Care

I love to hate dogma. And there’s probably nothing in surgery more sacred and more ingrained than how to take care of a wound. Everybody knows that you have to keep surgical or traumatic wounds dry, and that once you can get them wet, showers are good at baths are bad. Right?

And for something as common as wound management, there must be some kind of research, right? Not so! I did quite a bit of digging through the literature since 1966 and managed to find only five papers. Here are the highlights:

  • A prospective study of 100 patients were randomized to shower or bathe postoperatively. Of note, the wounds were sprayed with a clear plastic dressing before getting in the water. The was no difference in infection rates.
  • Another prospective study of 100 patients with stapled incisions after spine surgery were allowed to bathe after 2 to 5 days. Compared to historical controls, there were no differences in infection rates even though the study patients had more complex operations than controls.
  • A prospective randomized study of 121 patients after hernia surgery found no difference in infection between shower and dry groups
  • A large randomized study of 817 patients similarly showed no difference between shower and dry groups
  • Another randomized trial of 170 patients showed no difference in infections between shower after 24 hours and control groups

Get the picture? And interestingly, the few wound infections documented in any of the studies tended to occur in the dry groups, although this was not statistically significant.

Bottom line: In general, it is not harmful to get a wound wet after 24 hours. We don’t know exactly why because of the paucity of the literature, but think about it. The water that we shower or bathe in is the same water that we drink. It’s very close to sterile. When we do shower or bathe, the bacteria that come in contact with the wound are our normal skin flora, which are already in and on the wound. Plus, most incisions that have been closed are water-tight within about 24 hours. It’s more likely that using soap and water is good for you because it washes away tons of bacteria, including the pathogens!

References:

  • Prospective randomised trial of the early postoperative bathing. BMJ 19 in June 1976: 1506-1507, 1976.
  • Wound care after posterior spinal surgery. Does early grading affect the rate of wound complications? Spine (Phila PA 1976) 21(18):2160-2162, 1996.
  • Does a shower with postoperative wound healing at risk? Chirurg 68(7): 715-717, 1997.
  • Modification of postoperative wound healing by showering. Chirurg 71(2):234-236, 2000.
  • Postoperative wound healing in wound-water contact. Zentralbl Chir 125(2):157-160, 2000.
Print Friendly, PDF & Email