All posts by TheTraumaPro

Pop Quiz: Part 1

Okay, this one’s tough! This is by far the hardest one I have posted. I don’t think anyone has a clue! It’s so hard, I’m going to post another image as a hint tomorrow. Then on Friday, I’ll show the after photo so you can tell me what the final problem was. Answer Monday!

Have a look at the image below and tell me what you think. Seems simple, right? How did it happen? What other injuries might be present? Comment below or tweet or email your thoughts!

FAST Cardiac Ultrasound And Traumatic Arrest

Cardiac arrest in trauma patients is bad. Really bad. There are few survivors, mainly those who have some signs of life when they roll into the resuscitation room. One of the signs we look for is cardiac electrical activity, especially a narrow complex rhythm. But most of the time these patients don’t survive either. Could there be a way to fine tune the use of pulseless electrical activity (PEA) to better determine when further care is futile?

The trauma group at UCSF-East Bay did a nice, retrospective review on the use of the cardiac portion of the FAST exam to assess patients arriving in PEA arrest after either blunt or penetrating trauma. The numbers were a bit thin, but they were able to study 162 patients who had both FAST and EKG upon arrival. Of those patients, 71 had electrical activity, but only 17 had cardiac motion. However, 4 of these 17 survived (24%) vs only 1 of the 54 who did not have cardiac motion.

About a third of these 71 patients suffered blunt trauma, the remainder had penetrating injury. Of the 17 with cardiac activity, 14 were penetrating and 3 were blunt. And of the 4 survivors mentioned above, 3 were penetrating.

Only 1 of the 71 patients with PEA and no cardiac activity survived, and this was a blunt arrest(!).

Bottom line: Traumatic arrest is a generally fatal problem. However, it appears that use of the cardiac portion of the FAST exam in penetrating or blunt trauma can help fine tune the aggressiveness of resuscitation. PEA without cardiac activity is uniformly fatal (although there was one blunt survivor, the authors did specify the quality of this survival). It may be wise to forego further resuscitative efforts in PEA patients without cardiac activity because they will not survive, even as an organ donor.

Reference: The heart of the matter: Utility of ultrasound of cardiac activity during traumatic arrest. J Trauma 73(1):103-110, 2012.

Trauma Mortality: The New Nomenclature – Part 3

Time to finish up this series on trauma mortality! We discussed the two types of anticipated mortality last week, now it’s time for the final (and worst) one.

Old nomenclature: preventable death
New nomenclature: unanticipated mortality

Note the subtle difference. The old name presumes you could have done something about it, which can lead to legal issues in some cases. The new one implies that death was unexpected, but does not presume that it could have been prevented. A good example would be a trauma patient who suddenly dies from a massive PE, despite DVT prophylaxis done according to the book.

Any unanticipated mortality should launch a full investigation from the trauma performance improvement program. In some cases, hospital PI may get involved. A root cause analysis may be indicated, depending on how many factors are involved. These cases must be discussed by the multidisciplinary trauma PI committee. It’s essential that everyone involved do their homework and become familiar with every aspect of care so that a meaningful analysis can occur at the meeting.

Trauma center reviewers will expect to see detailed documentation of the analysis in the PI committee minutes. And unless the death was a complete and nonpreventable surprise there should be new protocols, policies and practice changes apparent. If these are not present, expect major reverification issues for your trauma center.

Is there an appropriate ratio of the three types of mortality? Obviously, there is a fair amount of variability. But after years of doing reviews, I can offer some guidelines. Here’s my 100:10:1 rule of thumb:

  • 100 cases – Anticipated mortality without opportunity for improvement (AMW/OOI)
  • 10 cases – Anticipated mortality with opportunity for improvement (AMWOI)
  • 0-1 case – Unanticipated mortality (UM)

If your hospital’s numbers are outliers in any group, your clinical care and performance improvement program will get extra scrutiny. If all your cases are AMW/OOI, then your PI process is too lax. This is a complex business, and there a many ways to improve our care. If your AMWOI cases are more frequent, your threshold for improvement may be set too low (see my post on this last week). If you have more than 1 or 2 UM, then there may be some serious care quality issues.

Bottom line: When reviewing trauma mortality, be realistic but brutally honest. We learn from the mistakes we make. But by adhering to the process, you should never make the same mistake twice.

Related posts: