Category Archives: Complications

What Is: A Morel-Lavallee Lesion?

Anyone who takes care of blunt trauma has seen the Morel-Lavallee lesion (M-L). Here’s an obvious one because it’s acute:

The M-L lesion is essentially a closed degloving injury in which the skin remains intact. The subcutaneous tissue is sheared off of the underlying fascia, and typically blood accumulates in the potential space that is created. This picture shows a less acute lesion; the bruising and ecchymosis on the surface have resolved. Note the collection on the lateral thigh:

These injuries may take a very long time to resolve and may leave some residual deformity. The definitive management has never been very clear: needle drainage vs incision, timing, compression wraps, etc.

The Mayo Clinic reviewed their 8-year experience with 87 of these lesions to try to shed some light on proper management. They treated their patients in four different ways: needle drainage, incision and drainage, compression wraps, and debridement with vacuum drainage devices. Here are the factoids from their study:

  • Motor vehicle crash was the most common etiology for this lesion, which makes sense due to the energy needed to shear the tissues
  • The most common locations were thigh, hip, and flank
  • The incidence of pre-existing conditions that might influence outcome (diabetes, obesity, smoking history, use of anticoagulants) did not seem to influence outcomes
  • Lesion location did not change the recurrence rate (even over joints)
  • Aspiration suffered the highest recurrence rate (56%) vs only 15-19% in the other groups
  • Aspiration of more than 50cc of fluid was more common in lesions that recurred (83%) vs those that did not (33%)

Their experience led them to develop the following practice guideline:

An incision and drainage procedure is not necessarily straightforward. Many of these wounds develop a pseudo-capsule if they are long-standing. Closure of the dead space can be challenging and may require quilting sutures or use of fibrin glue in addition to low suction drains. Some surgeons use sclerosing agents, either alone or in addition to the adjuncts listed above.

Bottom line: The Morel-Lavallee lesion can be challenging to treat. Although this study has limited numbers, it provides enough guidance to suggest a consistent way of managing it. I recommend adopting this algorithm to provide a standard pathway for dealing with it.

Reference: The Mayo Clinic experience with Morel-Lavallee lesions: establishment of a practice management guideline. J Trauma 76(2):493-497, 2014.

Low Grade Spleen Injury With Contrast Blush

It is almost a given that low-grade solid organ injuries are relatively benign and seldom require any intervention. In fact, some trauma centers actually discharge these patients home from the emergency department.

But what about low-grade isolated spleen injuries with a contrast blush? Apparently, a few authors believe that this may be a benign condition that doesn’t require any specific management. This didn’t sit well with some, and a multicenter study was launched to look at this group more closely.

A retrospective cohort study involving 21 trauma centers was organized via the Eastern Association for the Surgery of Trauma. It enrolled adults (>18 years) with a grade I or II injury on CT scan after blunt trauma, which also demonstrated a contrast blush. Hemodynamically unstable patients and those who had clotting disorders or were taking any anticoagulant other than aspirin were excluded.

Here are the factoids:

  • Although 209 patients were enrolled over a nearly six-year period, 64 were removed due to meeting exclusion criteria or undergoing some intervention or laparotomy for other injuries
  • The remaining 145 patients were 66% men with an average age of 47
  • About one-third had a grade I injury, and two-thirds had grade II
  • 20% of these patients failed nonoperative management
  • These results were unchanged between grade I (18%) and grade II (21%)
  • Those who failed had a longer hospital stay (8 days vs. 5 days), had a higher likelihood of blood transfusion (55% vs. 26%) and MTP activation (14% vs. 3%)
  • There was no difference in discharge disposition or mortality

Bottom line: This study was conducted between 2014 and 2019. During that period, the AAST spleen and liver injury grading scales did not consider vascular injury. The 2018 update automatically upgrades injuries with blush or extravasation to Grade IV. This has a significant impact on how we view these injuries.

I have always said that any patient with contrast extravasation is bleeding to death until we stop it. The only exception is pediatric patients, who seem to clot these on their own. The 2018 update bore this out, and this paper confirms that low-grade anatomic injuries become dangerous if extravasation is present. I would also extend this to patients with a CT showing significant pseudoaneurysm formation.

So what should you do? If you have a patient with a spleen or liver injury that has contrast extravasation or a pseudoaneurysm, consider this a patient that needs hemorrhage control by interventional radiology under Standard 4.15 in the 2022 ACS Resources for Optimal Care of the Injured Patient. This means that you must let your IR team know that you have a patient who needs an intervention within 60 minutes, or you will need to transfer to a center with those capabilities as soon as possible.

Reference: Failure rates of nonoperative management of low-grade splenic injuries with active extravasation: an Eastern Association for the Surgery of Trauma multicenter study. Trauma Surg Acute Care Open. 2024 Mar 7;9(1):e001159. doi: 10.1136/tsaco-2023-001159. PMID: 38464553; PMCID: PMC10921525.

Incidental Appendectomy During Trauma Laparotomy?

The debate over incidental appendectomy has waxed and waned over the years. And for the most part, it has nearly permanently waned in general surgical cases for now. But every once in a while, I am asked about incidental appendectomy during trauma laparotomy. Is it a good idea? What reasons could there possibly be for doing it?

In the old days, we would frequently do an incidental appendectomy because… well, just because we were there. The surgeon was in the midst of a general surgical case, typically an open one, and this normal little appendix was staring us in the face. The justification was usually, “We’ll save him/her another operation in the future in case he develops acute appendicitis.”

Legitimate reason? It took many years for the literature to develop, but it finally did. Here are the reasons we figured out not to do it:

  • Despite how innocuous a procedure seems, there is a measurable uptick in complication rates. This is true in the usual clean contaminated general surgery cases. Some papers also noted an increased mortality when the appendectomy was added to a cholecystectomy case. In a trauma procedure with bowel injury and contamination, it’s a bit harder to see the correlation. But any time we cut or staple something out, there is always the possibility that it might break down.
  • Cost increases in laparoscopic cases if additional ports and equipment are needed for the appendectomy. This doesn’t apply to major trauma cases since we better not be doing them laparoscopically!
  • The appendix is not the useless vestigial structure we initially thought. Evidence shows that it is a repository for the gut microbiome, which can help repopulate the colon with bacteria after a serious insult like prolonged antibiotic administration. Unnecessary removal may ultimately interfere with gut health and disease.

Can acute appendicitis develop after trauma laparotomy? Sure, at any time. Thankfully, it’s not very common. The presenting complaints are the same as we learned in the doctor books. However, the location of the pain and tenderness may not be in the classic location, depending on the post-trauma anatomy and presence of adhesions.

Bottom line: Incidental appendectomy is no longer indicated for just about anything, including trauma laparotomy. If one of your patients presents with abdominal pain at any time, both post-traumatic and other causes must be considered. CT has become the standard for appendicitis workup and is extremely helpful in sorting out causes in the post-op trauma patient. Use it, and if it is one of the rare cases where appendicitis is actually present, then proceed with the usual and appropriate operative on nonoperative management.

References:

  • Incidental appendicectomy with laparotomy for trauma. Br J Surg 62(6):487-9, 1975
  • Appendicitis following blunt abdominal trauma. Am J Emerg Med 35(9):1386.e5-1386, 2017.
  • Systematic review of blunt abdominal trauma as a cause of acute appendicitis. Ann R Coll Surg Engl 92(6):477-82, 2010.

Dysphagia and Cervical Spine Injury

Cervical spine injury presents a host of problems, but one of the least appreciated ones is dysphagia. Many clinicians don’t even think of it, but it is a relatively common problem, especially in the elderly. Swallowing difficulties may arise for several reasons:

  • Prevertebral soft tissue swelling may occur with high cervical spine injuries, leading to changes in the architecture of the posterior pharynx
  • Rigid cervical collars, such as the Miami J and Aspen, and halo vests all force the neck into a neutral position. Elderly patients may have a natural kyphosis, and this change in positioning may interfere with swallowing. Try extending your neck by about 30 degrees and see how much more difficult it is to swallow.
  • Patients with cervical fractures more commonly need a tracheostomy for ventilatory support and/or have a head injury, and these are well known culprits in dysphagia

Normal soft tissue (<6mm at C2, <22mm at C6)

A study in the Jan 2011 Journal of Trauma outlined the dysphagia problem seen with placement of a halo vest. They studied a series of 79 of their patients who were treated with a halo. A full 66% had problems with their swallowing evaluation. This problem was associated with a significantly longer ICU stay and a somewhat longer overall hospital stay.

Bottom line: Suspect dysphagia in all patients with cervical fractures, especially the elderly. We don’t use halo vests very often any more, but cervical collars can exacerbate the problem by keeping the neck in an unaccustomed position. Carry out a formal swallowing evaluation, and adjust the collar (or halo) if appropriate.

Reference: Swallowing dysfunction in trauma patients with cervical spine fractures treated with halo-vest fixation. J Trauma 70(1):46-50, 2011.

Why Do Trauma Patients Get Readmitted?

Readmission of any patient to the hospital is considered a quality indicator. Was the patient discharged too soon for some reason? Were there any missed or undertreated injuries? Information from the Medicare system in the US (remember, this represents an older age group than the usual trauma patient) indicates that 18% of patients are readmitted and 13% of these are potentially preventable.

A non-academic Level II trauma center in Indiana retrospectively reviewed their admissions and readmissions over a 3 year period and excluded patients who were readmitted on a planned basis (surgery), with a new injury, and those who died. This left about 5,000 patients for review. Of those, 98 were identified as unexpected readmissions. 

There were 6 major causes for readmission:

  • Wound (23) – cellulitis, abscess, thrombophlebitis. Two thirds required surgery, and 4 required amputation. All of these amputations were lower extremity procedures in obese or morbidly obese patients.
  • Abdominal (16) – ileus, missed injury, abscess. Five required a non-invasive procedure (mainly endoscopy). Only 2 required OR, and both were splenectomy for spleen infarction after angioembolization.
  • Pulmonary (7) – pneumonia, empyema, pneumothorax, effusion. Two patients required an invasive procedure (decortication, tube placement).
  • Thromboembolic (4) – DVT and PE.  Two patients were admitted with DVT, 2 with PE, and 1 needed surgery for a bleed due to anticoagulation.
  • CNS (21) –  mental status or peripheral neuro exam change. Eight had subdural hematomas that required drainage; 3 had spine fractures that failed nonoperative management.
  • Hematoma (5) – enlargement of a pre-existing hematoma. Two required surgical drainage.

About 14% of readmissions were considered to be non-preventable by a single senior surgeon. Wound complications had the highest preventability and CNS changes the lowest. Half occurred prior to the first followup visit, which was typically scheduled 2-3 weeks after discharge. This prompted the authors to change their routine followup to 7 days.

Bottom line: This retrospective study suffers from the usual weaknesses. However, it is an interesting glimpse into a practice with fewer than the usual number patients lost to followup. The readmission rate was 2%, which is pretty good. One in 7 were considered “preventable.” Wounds and pulmonary problems were the biggest contributors. I recommend that wound and pulmonary status be thoroughly assessed prior to discharge to bring this number down further. Personally, I would not change the routine followup date to 1 week, because most patients have far more complaints that are of little clinical importance than compared to 2 weeks after discharge.

Reference: Readmission of trauma patients in a nonacademic Level II trauma center. J Trauma 72(2):531-536, 2012.