Fatigue V: Your Patients

I’ve spent the past several posts detailing how interrupted sleep interferes with the health and effectiveness of trauma professionals. But what about our patients? Being in the hospital is nothing like trying to sleep at home. The beds are terrible. There is noise in the hall. Their roommate is confused and calls out at all hours. Nurses keep coming in to check vital signs. The pulse oximeter beeps every 10 minutes.

How bad is it, really? There is no trauma patient-specific literature yet on the topic. But there is a recently published paper detailing the experience of general surgery patients admitted after elective procedures that is very revealing. The group at Dartmouth-Hitchcock Medical Center recruited adults who stayed at least one night at the hospital.

Prior to surgery, each patient completed a questionnaire that measured their baseline home sleep quality. Postop, they completed another questionnaire designed to measure their in-hospital sleep quality.  Each patient was fitted with a Fitbit Inspire HR tracker, which they wore during their entire hospitalization.  After discharge home, they completed a final outpatient sleep questionnaire.

Here are the factoids:

  • A total of 74 patients were recruited and 54 completed all phases of the study; 59 finished all of the pre-discharge phases
  • The average inpatient sleep score was 49/100, where scores less than 50 are considered substandard
  • The major culprit for in-hospital sleep disturbance was nighttime awakenings
  • Patients who had better home sleep quality tended to have a higher in-hospital score (65)
  • Sleep quality was so poor that only 40% of Fitbit devices were able to record sleep time on the first postop night, and that average time asleep was 4.7 hours
  • As expected, patients with a roommate did not sleep as well as those in private rooms
  • Average sleep time increased over subsequent nights to about 6 hours, which is still short of the recommended 7 hour minimum
  • About 88% of patients were poor sleepers preop (!), and this did not change after they returned home (85%)

Bottom line: Sleep quality in the hospital is terrible! I can vouch for this from the standpoint of being a surgeon on call, and also from one experience as a patient. There is very good data on the adverse effects of sleep loss. Fasting glucose and systolic blood pressure rise significantly after a single night of poor sleep. When these occur in a hospital, this sets the clinicians into a frenzy of prescribing sliding scale insulin or antihypertensives and other meds that are probably not needed.

There are numerous other more subtle effects as well. The best way to avoid them is to promote good sleep. But how can you do this in the hospital? Here are some tips:

  • Be aware that the way you order medications (tid vs q8hrs) has a big impact on when the evening/night doses are given. Talk to your pharmacist so your patient only gets meds when they would normally be awake and not in the middle of the night.
  • Remove unnecessary monitors that might alarm during sleep. Pulse oximeters are probably the biggest culprit. Does it need to be continuous, or can (very) occasional spot checks be done?
  • Does your patient really need vital signs taken during the middle of the night? After the first few shifts, most ward patients do not.
  • Watch out for the phlebotomists! They love to circulate early so lab results are available at the crack of dawn. Can’t it wait?
  • Some practice guidelines call for repeat scans or other studies after a certain number of hours. If one is due at 3am, can’t it wait until morning? Really?
  • On a daily basis, review all actual or potential nighttime interruptions with the patient and their nurse. Discontinue or reschedule anything that really can’t wait until morning.

Failing to provide for good sleep quality sets your patient up for complications, abnormal vitals and blood tests, and altered mental status. Do everything you can to optimize their sleep!

Reference: Deep sleep and beeps: sleep quality improvement project in general surgery patients. JACS 232(6):882-888, 2021.