Tag Archives: TBI

Nail Discoloration After Severe Traumatic Brain Injury (TBI)

Occasionally, patients who have had a severe brain injury but recovered relatively quickly may present with complaints of odd nail discoloration. This may involve fingernails and/or toenails. What gives?

This is actually a byproduct of repeated exams to determine the Glasgow Coma Scale score. A common way to determine the motor component is to squeeze the fingertip or toetip. I’ve seen some neurosurgeons use a pen to apply a great deal of force to the nail.

The discoloration is a resolving subungual hematoma. You may see different colors under different nails, depending on the age of the hematoma. Amaze your colleagues with your knowledge on this one!

Cervical Spine Clearance and Altered Mental Status

Clearance of the cervical spine is a complicated topic, with many opinions and anecdotes. EAST developed a set of practice guidelines in 1998 and updated them in 2000 and again in 2008. They are well-accepted and very helpful.

Spine clearance in an obtunded or intoxicated patient is made even more challenging. Here’s an approach based on the EAST guidelines that I find helpful:

  1. Clear the bones. Obtain a CT of the cervical spine from skull base to T2. Sagittal and coronal 2D reconstructions must be created for review. Conventional images (AP, lateral, odontoid) are of no additional value.
  2. If a fracture is identified, consult your spine service.
  3. If a neurologic deficit is present, obtain an MRI and consult your neurosurgery or spine service.
  4. Clear the ligaments. In the obtunded patient, there are 3 choices: 1) keep the collar on until the patient wakes up enough to be examined, 2) obtain an MRI to evaluate the ligaments, or 3) remove the collar on the basis of CT alone.

In patients that you don’t expect to wake up any time soon, I prefer MRI. Some say that it should be obtained within 72 hours of injury for best accuracy in detecting ligamentous injury. Unfortunately, I have not been able to find any specific literature support for this. If the MRI is negative, the collar can be removed immediately.

There is a growing body of research that suggests that CT alone is sufficient for clearance. My opinion is that this is probably true, but only if the scan is read by a radiologist who is especially skilled in reading CT scans of the cervical spine. A pool radiologist may miss subtle findings that might indicate a ligamentous injury.

Reference: Eastern Association for the Surgery of Trauma practice guideline: Identifying Cervical Spine Injuries Following Trauma – 2009 Update. Click here to download.

Can Fish-Oil Supplements Speed Recovery From TBI?

Overall, omega-3 fatty acids (O3FA) are thought to be an important and beneficial part of our diet. Recently, the Journal of Neurosurgery published an online paper that looked at the potential benefits of fish oil supplementation on recovery from brain injury.

Originally, axonal damage from TBI was thought to occur at the time of impact. Recent research has shown that the injury is really a progressive event that leads to swelling and axon disconnection during the hours to days after the initial injury. Building on a few animal studies over the past 6 years, a project to look at the effect of omega-3 fatty acid supplementation on brain injury was developed.

The authors performed a controlled study in rats, comparing supplementation with 10 or 40 mg/kg/day of O3FA for 30 days after brain injury with no supplementation. After 30 days, the rats were sacrificed and their brains were examined. The investigators found that a chemical marker of axonal injury (beta amyloid precursor protein) was very significantly decreased in the supplemented animals. The decrease was fairly dramatic and was similar for both doses. 

The actual mechanism by which the protective effect of O3FA was not determined in this study. There is speculation that it may be due to stabilization of brain cell membranes and reduction in the number of reactive oxygen molecules.

This research is very intriguing and appears to have been designed and executed well. The only downside to the work is that the senior investigator is the founder and trustee for the Inflammation Research Foundation. The foundation promotes research on the treatment of diseases with nutritional supplements such as fish oil. The Foundation provided the supplements used in this study. Readers must always be careful when interpreting positive data that is funded or supported by an organization that may benefit from positive results. 

Bottom line: Interesting study, and certainly one that should be followed up with human studies. As far as we know, fish oil supplements are relatively safe, so it should be a little easier to move this work along to human studies. It is not sufficient to recommend adding O3FA to the nutritional regimen of head injured patients yet.

Reference: Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model Laboratory investigation. Sears et al. J Neurosurg online July 16, 2010.

Epley’s Maneuver For Vertigo After TBI

Some people experience vertigo after suffering a TBI. This may occur because small calcium carbonate crystals that are normally attached to a membrane in the middle ear are dislodged by the trauma. They can then settle within the semicircular canals. When the head is turned or moved, they brush against the sensitive hairs, sending false signals to the brain. This can result in dizziness, nausea and vertigo. 

The Epley maneuvers were designed to move the crystals back out of the semicircular canals, where they can adhere to the membrane again. They consist of a pattern of head movements that should be performed by a trained professional. This is very important because the maneuvers may induce nausea requiring antiemetics. Certain head movements must be limited for a few days after the maneuvers to make sure the crystals stay in position. The overall success rate is about 80%, but on occasion the maneuvers must be repeated for success.

The video demonstrates the basics of the maneuvers. Remember, don’t try this at home by yourself. Seek out a therapist who is experienced with them.

(In)appropriate Neurosurgical Consultation

Emergency physicians and trauma surgeons routinely assess patients with potential neurotrauma and decide whether to obtain CT scans and/or neurosurgical consultations. The criteria they use to make these decisions are not always clear.

The neurosurgery department at the University of California – Davis performed a prospective study that looked at the appropriateness of consults they received and of CTs of the head ordered by other physicians in trauma and non-trauma patients. A total of 99 patients entered the study (32 head trauma, 29 spine trauma, 34 other disease, 4 not documented).

After reviewing the consultations, they found that 69 were appropriate, 32 were not appropriate, and 7 could not be classified. Additionally, they felt that 10 of the head CTs in injured patients (31%) were not indicated.

“Appropriateness” was difficult to define well in this study, and there is certainly a great deal of subjectivity involved. The authors recommend using the Canadian CT Head Rule to fine-tune use of head CT in trauma patients.

The bottom line: 1 in 4 consults were not appropriate, and 1 in 3 head CTs were not indicated. Despite its flaws, this study shows that we need to be better at evaluating our patients to reduce unnecessary consults and radiation!

Reference: (In)appropriate neurosurgical consultation. van Essen et al. Clinical Neurology and Neurosurgery. In press, for publication 10/2010.