Tag Archives: chest tube

Quiz: Is This A Good Chest Tube?

A blunt trauma activation patient presents with a pneumothorax seen on the initial chest x-ray, obtained in your trauma bay. You professionally insert a large chest tube, and all appears to go well. You shoot a followup chest x-ray and this is what you get:

What do you think of the tube position? Looks great, right?

But if you look carefully, you can see the lung outline in the middle of the right side of the chest. Big-time pneumothorax despite what looks like a perfectly placed tube. There are several possible explanations, and many of you sent me your guesses:

  • The tube is in the lung. This rarely happens to normal lungs. Sure, you can probably do it to an ARDS lung, but otherwise it’s not very likely.
  • The tube is in the fissure. This does happen on occasion, but not often. And many times it works anyway.
  • The tube is occluded or kinked. A PA or AP chest x-ray will show the kink, although bent tubes frequently work anyway. If a hemothorax is present, it is possible that a clot is plugging the tube. Clearing a plugged tube will be the subject of another post.
  • It’s not really a chest tube. Hopefully, this would have been detected when it was placed, but it isn’t always. The chest x-ray above looks great, right? Unfortunately, it’s a 2 dimensional representation of a 3-D object. Where is that tube in the z-axis?

In this case the correct answer is the last one. This is one time when I would actually recommend a lateral chest x-ray. Have a look at the result. You can clearly see the tube snaking around into the soft tissues of the back.

Bottom line: Remember that a perfect x-ray doesn’t necessarily mean a perfect tube. Go through the various possibilities quickly, and make it work.

Related posts:

Imaging After Chest Tube: Why Do It?

More dogma, or is it actually useful? Any time a chest tube (tube thoracostomy) is inserted, we automatically order a chest x-ray. Even the ATLS course recommends obtaining an image after placement. But anything we do “automatically” is grounds for critical analysis to see if there is a valid reason for doing it.

A South African group looked at the utility of this practice retrospectively in 1004 of their patients. They place 1042 tubes. Here are the factoids:

  • Patients were included if they had at least one chest x-ray obtained after insertion
  • Patients were grouped as follows: Group A (10%) had the tube inserted on clinical grounds with no pre-insertion x-ray (e.g. tension pneumothorax). Group B (19%) had a chest x-ray before and had ongoing clinical concerns after insertion. Group C (71%) had a chest-xray before and no ongoing concerns.
  • 75% of injuries were penetrating (75% stab, 25% GSW), 25% were blunt
  • Group A (insertion with pre-x-ray): 9% had post-insertion findings that prompted a management change (kinked, not inserted far enough)
  • Group B (ongoing clinical concerns): 58% required a management change based on the post-x-ray. 33% were subcutaneous or not inserted far enough (!!)
  • Group C (no ongoing clinical concerns): 32 of 710 (5%) required a management change, usually because the tube was too deep

The authors concluded that if there are no clinical concerns (tube functioning, no clinical symptoms) after insertion, then a chest x-ray is not necessary.

Bottom line: But I disagree with the authors! Even with no obvious clinical concerns, the tube may not be functioning for a variety of reasons. Hopefully, this fact would then be discovered the next day when another x-ray is obtained. But this delays the usual progression toward removing the tube promptly by at least one day. It increases hospital stay, as well as the likelihood of infection or other hospital-associated complication. A chest x-ray is cheap compared to a day in the hospital, which would potentially happen in 5% of these patients. I recommend that we continue to obtain a simple one-view chest x-ray after tube insertion.

Tomorrow: Look at the chest x-ray. Is it a good chest tube?

The next day: What if you placed the chest tube in your resuscitation room and are planning to go to CT for additional imaging? Is it worthwhile getting a chest x-ray, or should you just check the tube with the CT scan?

Related posts:

When To Remove a Chest Tube

Chest tubes are needed occasionally to help manage chest injuries. How do you decide when they are ready for removal?

Unfortunately, the literature is not very helpful in answering this question. To come up with a uniform way of pulling them, our group looked at any existing literature and then filled in the (many) blanks, negotiating criteria that we could all live with. We came up with the following.

Removal criteria:

  1. No (or a minimal, stable) residual pneumothorax
  2. No air leak
  3. Less than 150cc drainage over the last 3 shifts. We do not use daily volumes, as it may delay the removal sequence. We have moved away from the “only pull tubes on the day shift” mentality. Once the criteria are met, we begin the removal sequence, even in the evening or at night. This typically shaves half a day from the hospital stay.

Removal sequence:

  • Has the patient ever had an air leak? If so, they are placed on water seal for 6 hours and a followup AP or PA view chest x-ray is obtained. If no pneumothorax is seen, proceed to the next step.
  • Pull the tube. See tomorrow’s blog for a video on how to do it.
  • Obtain a followup AP or PA view chest x-ray in 6 hours.
  • If no recurrent pneumothorax, send the patient home! (if appropriate)

Click here to download the full printed protocol.

Lateral Chest X-Ray For Pneumothorax? Waste of Time!

Pneumothorax is typically diagnosed radiographically. Significant pneumothoraces show up on chest xray, and even small ones can be demonstrated with CT.

Typically, a known pneumothorax is followed with serial chest xrays. If patient condition permits, these should be performed using the classic technique (upright, PA, tube 72″ away). Unfortunately, physicians are used to ordering the chest xray as a bundle of both the PA and lateral views.

The lateral chest xray adds absolutely no useful information. The shoulder structures are in the way, and they obstruct a clear view of the lung apices, which is where the money is for detecting a simple pneumothorax. The xray below is of a patient with a small apical pneumothorax. There is no evidence of it on this lateral view.

Bottom line: only order PA views (or AP views in patients who can’t stand up) to follow simple pneumothoraces. Don’t fall into the trap of automatically ordering the lateral view as well!

Lateral chest xray