Tag Archives: Cervical spine

Comparison of Cervical Spine Stabilization

Eight months ago I blogged about inline stabilization vs inline traction of the cervical spine. Click here to read the post. A reader recently asked what the optimal method for inline stabilization is.

We’ve been pondering this question for nearly 30 years. In 1983, trauma surgeons at UCLA looked at a number of devices available at that time and tested them on normal volunteers. They measured neck motion to see which was “best." 

Here’s what they found:

  • Soft collar – In general, this decreased rotation by 8 degrees but insignificantly protected against flexion and extension. Basically, this keeps your neck warm and little else.
  • Hard collars – A variety of collars available in that era were tested. They all allowed about 8% flexion, 18% lateral movement, and 2% rotation. The Philadelphia collar allowed the least extension.
  • Sandbags and tape – Surprisingly, this was the best. It allowed no flexion and only a few percent movement in any other direction.

The Mayo clinic compared four specific hard collars in 2007 (Miami J, Miami J with Occian back, Aspen, Philadelphia). They found that the Miami J and Philadelphia collars reduced neck movement the best. The Miami J with or without the Occian back provided the best relief from pressure. The Aspen allowed more movement in all axes.

And finally, the halo vest is the gold standard. These tend to be used rarely and in very special circumstances.

Bottom line: 

  • For EMS: Rigid collar per your protocol is the standard. In a pinch you can use good old tape and sandbags with excellent results.
  • For physicians: The Miami J provides the most limitation of movement. If the collar will be needed for more than a short time, consider the well-padded Occian back Miami J (see below).

Miami J with Occian back

References:

  • Efficacy of cervical spine immobilization methods. J Trauma 23(6):461-465, 1983.
  • Range-of-motion restriction and craniofacial tissue-interface pressure from four cervical collars. J Trauma 63(5):1120, 1126, 2007.

From the Archives: Cervical Spine Imaging

So far, I’ve posted more than 200 items during the past year and a half. There’s a lot of good stuff in the archives, and I am going to periodically provide a list of links to them so they are not forgotten. To see a full index of the archive by subject, click here.

Today, I’m going to focus on cervical spine imaging. Here are four interesting posts from the archives:

As always, I welcome suggestions for new posts!

Myth: Motorcycle Helmets and Cervical Spine Injury

The number of motorcyclists has been increasing over the past decade. At the same time, the number of states repealing their helmet laws is increasing. The evidence is convincing that the number and severity of brain injuries is decreased with helmet use. But what about spine injury?

Many arguments against wearing helmets given by riders are derived from a report in 1986 by Goldstein*. One of the issues cited in this paper is the potential increase in cervical spine injuries due to the weight of the helmet. A recently published study using the National Trauma Data Bank (NTDB) corroborates several smaller studies which show that this just isn’t so.

All motorcycle collisions in the NTDB involving adults were analyzed by logistic regression. Missing data was compensated for using standard statistical techniques. Nearly 41,000 cases had complete records for analysis. About 77% of riders were wearing helmets, and the overall mortality was 4%. 

Nonhelmeted riders suffered the following statistically significant differences:

  • A higher proportion of severe head injury (19% vs 9% with helmets)
  • Higher incidence of shock on admission (6% vs 5% with helmets)
  • Higher injury severity score (ISS) (14.7 vs 13.4 with helmets)
  • Higher crude mortality (6.2% vs 3.5% with helmets)
  • Higher incidence of cervical spine injury (5.4% vs 3.5% with helmets)

Bottom line: Motorcyclists wearing helmets had a 22% reduction in the likelihood they would sustain a cervical spine injury in a crash. This is in addition to decreases in shock, injury severity and death. These data need to be considered when the future of helmet laws is considered in any state looking at repealing them.

References:

  • Motorcycle helmets associated with lower risk of cervical spine injury: debunking the myth. J Amer Col Surgeons 212(3):295-300, 2011.
  • *The effect of motorcycle helmet use on the probability of fatality and the severity of head and neck injury. Evaluation Rev 10:355-375, 1986.

Cervical Spinal Cord Injury: Who Needs A Tracheostomy?

The sad truth is that patients with cervical spine injury may need a tracheostomy. In very high lesions (C1-2) the need may be permanent. Lower injuries (C3-5) frequently need a trach for a limited period of time while they develop enough reserve to compensate for the lost of chest wall muscle power.

It’s not always easy to tell which patient is likely to need intubation upon arrival in the ED. I’ve seen occasional patients fail while getting their CT scans, which is poor planning. Is there a way to predict who might fail, thus benefiting from early intubation and an early plan for tracheostomy?

The trauma group at LAC + USC Medical Center undertook a National Trauma Databank review to try to answer this question. They identified 5256 patients with cervical spinal cord injuries without a severe traumatic brain injury that would otherwise require intubation. About 21% received tracheostomies, and the common predictors were:

  • Intubation at the scene by EMS (they’ve done the job of deciding for us!)
  • Intubation in the ED
  • Complete cord injury at any level
  • Facial fractures
  • Chest trauma
  • Injury Severity Score >=16

Patients who received a tracheostomy generally spent more days on the vent, in the ICU and in the hospital than those who did not. However, their mortality was lower.

It’s generally recognized that patients with complete injuries from C1-C5 routinely require tracheostomy. The surprising thing about this study was that complete injuries at C6 or C7 did as well.

Bottom line: If you have a patient with a spinal cord injury who meets any of the criteria above, stand ready to intubate. I tell my trainees that, if at any time they see something that makes them think about intubating, they should have already done it. Likewise, the surgical ICU team should have a low threshold to performing an early tracheostomy on these patients.

Reference: Incidence of clinical predictors for tracheostomy after cervical spinal cord injury: a National Trauma Databank review. J Trauma 70(1): 111-115, 2011.

Picture: crossbow bolt through the mouth and cervical spinal cord.

Dysphagia and Cervical Spine Injury

Cervical spine injury presents a host of problems, but one of the least appreciated ones is dysphagia. Many clinicians don’t even think of it, but it is a relatively common problem, especially in the elderly. Swallowing difficulties may arise for several reasons:

  • Prevertebral soft tissue swelling may occur with high cervical spine injuries, leading to changes in the architecture of the posterior pharynx
  • Rigid cervical collars, such as the Miami J and Aspen, and halo vests all force the neck into a neutral position. Elderly patients may have a natural kyphosis, and this change in positioning may interfere with swallowing. Try extending your neck by about 30 degrees and see how much more difficult it is to swallow.
  • Patients with cervical fractures more commonly need a tracheostomy for ventilatory support and/or have a head injury, and these are well known culprits in dysphagia

A study in the Jan 2011 Journal of Trauma outlines the dysphagia problem seen with placement of a halo vest. They studied a series of 79 of their patients who were treated with a halo. A full 66% had problems with their swallowing evaluation. This problem was associated with a significantly longer ICU stay and a somewhat longer overall hospital stay.

Bottom line: Suspect dysphagia in all patients with cervical fractures, especially the elderly. Carry out a formal swallowing evaluation, and adjust the collar or halo if appropriate. 

Reference: Swallowing dysfunction in trauma patients with cervical spine fractures treated with halo-vest fixation. J Trauma 70(1):46-50, 2011.