Drugs Are Chemicals??

One of the cornerstones of allopathic medicine is the use of drugs to treat disease conditions. And unfortunately, one of the side effects of using drugs to treat problems is the production of side effects(!).

In trauma care, even something as simple as treating pain from an injury can create major problems. Give a narcotic pain medication. The patient gets nauseated and vomits. Try a different narcotic. The patient develops constipation. Give stool softeners and cathartics. Diarrhea. Then pseudo-obstruction develops. Give neostigmine. The patient becomes bradycardic. Give… well, you get the picture.

How common are side effects? Very! Did anyone see the first TV commercials for Chantix, the smoking cessation drug? It was about 3 minutes long because of the long list of side effects that were described. I’m surprised anyone was willing to risk them just to stop smoking cigarettes.

A recent study looked at the number of side effects listed on the labels of 5,602 medications approved by the FDA. There were a grand total of 534,125 adverse drug effects described in the packaging. Some interesting statistics:

  • The number of adverse effects for ranged from 0 to 525(!) for a single drug
  • The median number of adverse effects was 49, the average was 70
  • Drugs with the most side effects are used in neurology, psychiatry and rheumatology
  • Newer drugs had significantly more adverse effects than older ones

It’s certainly easy to bash pharmaceutical companies on their products. But some of these findings may be due to more rigorous testing and monitoring, as well as nuances in the populations in which these drugs are used.

Bottom line: Drugs are chemicals! Each chemical has a number of effects, some of which are desirable, and some of which are not. The drug companies choose to market a drug based on one desired effect (e.g. control of nausea). Just remember, when you give that medication, you will probably get the desired effect, but you will just as likely also get some of the other 69 possible side effects. Be prepared, and prescribe sensibly.

Reference: A quantitative analysis of adverse events and “overwarning” in drug labeling. Arch Int Med 171(10):944-946, 2011.

Identifying Bowel and Mesenteric Injury by CT

CT scan is an invaluable tool for evaluating blunt abdominal trauma. Although it is very good at detecting solid organ injury, it is not so great with intestinal and mesenteric injuries. Older studies have suggested that CT can detect mesenteric injuries if done right, but a newly published study has shown good accuracy with a few imaging tweaks.

A Taiwanese study looked at a series of prospectively studied victims of blunt abdominal trauma. Patients with abdominal pain or a positive FAST were entrolled (total 106). IV contrast was given, and scans during the arterial, portal, and equilibrium contrast phases were performed using a multidetector scanner. Images were read in a blinded fashion.

A total of 13 of 23 patients who underwent laparotomy were found to have a bowel or mesenteric injury. Five had bowel injury, 4 had mesenteric hemorrhage, and 4 had both. Mesenteric contrast extravasation was seen in 7 patients, and this correlated with mesenteric bleeding at laparotomy.

The authors found that the following signs on CT scan indicated injury:

  • Full or partial thickness change in bowel wall appearance
  • Increased mesenteric density
  • Free fluid without solid organ injury

Bottom line: This study shows that CT scan can detect bowel and mesenteric injury reliably if you scan the patient 3 times! This seems like over-radiation and overkill. A more intelligent way to approach this would be to perform a normal trauma abdominal scan. If a suspicious area of mesenteric or bowel thickening is seen, then a limited rescan through the affected area only for equilibrium phase images may be warranted. If actual contrast extrvasation is seen, no further scanning is needed. A quick trip to the OR is in order.

Reference: Contrast-enhanced multiphasic computed tomography for identifying life-threatening mesenteric hemorrhage and transmural bowel injuries. J Trauma 71(3):543-548, 2011.

Trauma Mythbusters: Bathing/Showering And Wound Care

I love to hate dogma. And there’s probably nothing in surgery more sacred and more ingrained than how to take care of a wound. Everybody knows that you have to keep surgical or traumatic wounds dry, and that once you can get them wet, showers are good at baths are bad. Right?

And for something as common as wound management, there must be some kind of research, right? Not so! I did quite a bit of digging through the literature since 1966 and managed to find only five papers. Here are the highlights:

  • A prospective study of 100 patients were randomized to shower or bathe postoperatively. Of note, the wounds were sprayed with a clear plastic dressing before getting in the water. The was no difference in infection rates.
  • Another prospective study of 100 patients with stapled incisions after spine surgery were allowed to bathe after 2 to 5 days. Compared to historical controls, there were no differences in infection rates even though the study patients had more complex operations than controls.
  • A prospective randomized study of 121 patients after hernia surgery found no difference in infection between shower and dry groups
  • A large randomized study of 817 patients similarly showed no difference between shower and dry groups
  • Another randomized trial of 170 patients showed no difference in infections between shower after 24 hours and control groups

Get the picture? And interestingly, the few wound infections documented in any of the studies tended to occur in the dry groups, although this was not statistically significant.

Bottom line: In general, it is not harmful to get a wound wet after 24 hours. We don’t know exactly why because of the paucity of the literature, but think about it. The water that we shower or bathe in is the same water that we drink. It’s very close to sterile. When we do shower or bathe, the bacteria that come in contact with the wound are our normal skin flora, which are already in and on the wound. Plus, most incisions that have been closed are water-tight within about 24 hours. It’s more likely that using soap and water is good for you because it washes away tons of bacteria, including the pathogens!

References:
  • Prospective randomised trial of the early postoperative bathing. BMJ 19 in June 1976: 1506-1507, 1976.
  • Wound care after posterior spinal surgery. Does early grading affect the rate of wound complications? Spine (Phila PA 1976) 21(18):2160-2162, 1996.
  • Does a shower with postoperative wound healing at risk? Chirurg 68(7): 715-717, 1997.
  • Modification of postoperative wound healing by showering. Chirurg 71(2):234-236, 2000.
  • Postoperative wound healing in wound-water contact. Zentralbl Chir 125(2):157-160, 2000.

Coming Tuesday! TraumaMedEd Newsletter For November!

Subscribers to the TraumaMedEd newsletter will receive their copy Tuesday by email. It will be distributed via the blog on Monday, December 3.

This month’s topic is Trauma Mythbusters. I’ll be reviewing and debunking some commonly held beliefs. Some of the topics covered will include:

  • Bathing and showering with wounds
  • NSAIDs and fracture healing
  • Cognitive rest after TBI
and more!

If you want to get your copy early, go to www.TraumaMedEd.com and sign up for a subscription now. You can also download past issues from the site.

Subdural Hematoma: How Well Do They Really Do?

The common teaching is that patients with traumatic subdural hematoma don’t do well. This is generally due to the presence of more direct injury to the brain compared with patients who have epidural hematoma. Outcomes data tends to bear this out. However, this data is at least 20 years old and it would be nice to know if we’ve made any progress in the management of this injury.

Harborview Medical Center retrospectively reviewed four years worth of its trauma registry data on patients with subdural hematoma. They scrutinized the usual outcomes data, looking at patients with and without surgical decompression. During the study period, clinical management routines remained basically the same.

A total of 1427 patients were included in the study. The average age was 58. Interesting facts from the study include:

  • Falls were by far the most common mechanism (57%)
  • Most patients (58%) had a GCS of 13 or higher
  • The TRISS probability of survival was slightly lower in the evacuated group (85%) versus the non-evacuated group (91%), yet
  • Mortality rate was 14%, with traumatic brain injury the most common cause of death
  • 29% had positive urine toxicology testing. Marijuana was most prevalent.
  • Slightly more than half were discharged home. Independence was higher in the group who had undergone evacuation of their hematoma.

Bottom line: Patients with subdural hematoma do better these days than they used to. This is probably due to better imaging (CT), which leads to earlier and more accurate management. Additionally, these injuries are now treated at regional trauma centers like Harborview, which may also improve survival.

Related posts:

Reference: Acute traumatic subdural hematoma: Current mortality and functional outcomes in adult patients at a Level I trauma center. J Trauma 73(5):1348-1354, 2012.

Home of the Trauma Professional's Blog

Do you want to get a daily email every time there’s a new post? See what I’m up to.

Click here to get details and subscribe!

[accua-form fid=”1″]

[mc4wp_form id=”2023″]