All posts by TheTraumaPro

Another Failure Of Shotgun Style Diagnostic Testing: The Trauma Incidentaloma

When our patients present with a problem, there is a time honored and well-defined sequence to help us come to a final diagnosis.

  • Take a detailed history
  • Examine the patient
  • Order pertinent diagnostic tests, if indicated
  • Then think about it a while

The first two items are a chip shot, and the trauma professional can gain a lot of information by spending a relatively short period of time doing these. And many times the diagnosis can be made without any further action.

However, diagnostic testing of all kinds has become so prevalent and easy to obtain that we rely on it a bit too much. And sometimes, we order it up in lieu of a thorough history and exam. If the clinician skimps on those steps, it’s much more difficult to narrow the list of differential diagnoses to a manageable number.

So what happens then? They use diagnostic tests as a crutch. Instead of being able to select a few focused tests to answer the questions, they essentially put an order sheet on the wall, fire off a shotgun, and order everything that’s been hit by the pellets.

Lots of tests, so they will definitely find the answer, right? Nope! There are two major problems here. First, the so-called signal to noise ratio is very low. There are so many results, that it is easy to overlook a pertinent positive among all the negatives.

But more significantly, there is always the possibility that there will be more than one positive. One of them might actually be the answer you were seeking. But what about the others? There are the trauma incidentalomas. Some may be truly positive, but there is always the possibility of a false positive. These are the most treacherous, because many trauma professionals then feel obligated to “do something about it.”

As we have found from multiple screening tests like PSA, PAP smear, and mammography, a significant number of patients may be harmed trying to further investigate what turns out to be nothing at all (artifact), or something completely benign. This includes not only harm from complications or unnecessary procedures, but months of anxiety the patient may suffer while the clinicians figure out what that thing inside them really is.

There are only a few studies on trauma incidentalomas available. One reviewed a series of almost 600 head CT scans in patients with TBI and found unexpected findings on 85%. About 90% were obviously benign. Unfortunately, it was not possible to follow these patients to find out how many of the remaining lesions turned out to be benign as well. But I would wager that most did.

Bottom line: I shouldn’t even have to say this, but do a good history and physical exam! If you need diagnostic studies, order only the one(s) that have the potential to make your final diagnosis. Don’t shotgun it. One very helpful tool is a well-designed practice guideline for commonly encountered clinical scenarios. This will limit the number of “other” findings you have to deal with. And finally, did I say to do a good history and physical exam?

Related posts:

Reference: Incidental cranial CT findings in head injury patients in a Nigerian tertiary hospital. J Emerg Trauma Shock 8(2):77-82, 2015.

Rest vs Physical Activity After Mild Pediatric Concussion: Which Is Better?

One of the most common recommendations after a child or young adult sustains a mild TBI is to rest. And even better, brain rest. I’ve written about that topic several times over the years.

But what about physical rest? There is a large body of literature documenting the numerous mental and physical benefits of exercise. Couldn’t they also apply after concussive injury to the brain? A study published recently tried to determine if physical activity or lack of it after mild TBI was helpful in reducing the incidence of post-concussive symptoms.

This was a planned analysis of prospectively collected data from nine research network hospital emergency departments in Canada. Children from age 5 through 17 were enrolled if they had received a concussion within 48 hours of the ED visit, as defined by the 2012 Zurich consensus. They were excluded if they had a positive head CT, GCS < 14, or pre-existing cognitive deficits.

Initial research data was collected during the ED visit, and followup phone calls were made by the research team at 7 and 28 days. They asked about self-reported level of physical activity on day 7, and post-concussive symptoms and their change over time on days 7 and 28.

Here are the factoids:

  • Of 3063 patients enrolled, 84% completed the ED assessment. 171 were excluded because they could not be contacted for the activity assessment on day 7.
  • Post-concussive symptoms were present in 30% of these children overall
  • 70% participated in physical activity during the first week: 32% light aerobic, 9% sport-specific, 6% non-contact drills, 4% full-contact practice, and 18% full competition (ignoring doctor’s orders?)
  • Overall, early activity was associated with a lower risk of post-concussive symptoms (25% vs 44%)
  • In patients who were symptomatic at day 7, symptoms were decreased at 28 days in patients who engaged in light aerobic activity, moderate activity, and even full-contact activity

Bottom line: This was a well designed study, but obviously with a number of limitations. Physical activity was self-reported, there may have been other factors that could not be controlled, and the study did not inquire about activity between days 7 and 28.

But this study appears to suggest that, like in most other areas, exercise is good. Even for the brain recovering from a concussion. Obviously, a really good randomized study would be the gold standard, but I doubt that will be done anytime soon. Trauma professionals may want to consider a cautious return to light to moderate activity as soon as the child feels well enough. But keep in mind that, in general, the onset of fatigue is a good indicator that it is time to stop activity and rest. And full contact should probably be avoided, especially because of the risk of re-injury.

Related posts:

Reference: Association between early participation in physical activity following acute concussion and persistent postconcussive symptoms in children and adolescents. JAMA 316(23):2504-2514, 2016.

EAST 2017 #14: Long Term Consequences of Trauma: Why Aren’t We Looking?

I’m adding one more post to my EAST 2017 collection. This one struck me because it dovetails with another one I analyzed last week. After hearing both, something just clicked. The first was “When is mild TBI not so mild”, and opened my eyes to the fact that more TBI patients had ongoing problems than I imagined.

Now I just heard a presentation that looked at long term functional outcomes in patients with ISS > 9 at Brigham and Women’s Hospital. They identified patients in their trauma registry from 6 and 12 months prior to the study, and called these patients to administer several standard evaluation tools. Of 394 eligible patients, 27% could not be contacted, and 30% declined to participate, leaving 171 subjects. Half were 6 months out from their discharge, and half were a year  out.

The findings were very interesting. Here are the factoids:

  • 23% had a positive PTSD screen at 6 months, but this decreased to 16% at one year
  • A quarter of patients were still living with assistance that they did not need preinjury in both time periods
  • 20% of patients experienced a change in insurance
  • Half of the patients stopped working due to their injury, and this did not improve at one year
  • One in six were readmitted at some point for their injuries
  • The majority used some type of rehabilitation service (inpatient or outpatient) during their recovery

Bottom line: In my mind, this is a very big deal. All trauma centers collect a huge amount of data to monitor how things work while the patient is in the hospital. However, once discharged, they are on their own. We have no idea how they are doing, we have no mechanisms for finding out, and we have no systems in place to help if there are problems.

It is certainly simple enough to schedule a few phone calls at time intervals after discharge. We have tools and screening questions that we can ask. We can even include this information in the trauma registry and trend it. But then what?

This problem reaches beyond the trauma centers. Sure, we can make referrals for PTSD and rehab services. But what about the patient’s job, or their insurance? What if they don’t have insurance coverage or funds for needed services?

I believe that trauma centers should develop these processes and start collecting this information now. But we will also have to work with community and social service resources in order to marshal the services that our patients require. 

Reference: Routine inclusion of long-term functional and patient reported outcomes into trauma registries: can this be done? Paper #34, EAST 2017.

EAST 2017 #13: An Extra Trauma Activation Tier For Geriatric Trauma

Our elderly population is growing rapidly, and the average age of the patients on the trauma service is escalating. These patients offer a number of challenges throughout their presentation to the hospital and the rest of their stay. Some trauma centers are now organizing special teams or response types to deal with the unique needs of this population. A few have adopted a separate response type when injured elderly patients present to the ED.

The group at Reading Hospital  implemented a separate trauma activation tier, “Tier 3”, driven by emergency physicians, to manage these patients. Tier 3 was designed to identify patients > 65 years of age with the potential for occult blunt injury to the head and torso. The normal activation criteria at this center would not have necessarily identified these patients. This study retrospectively looked at demographics and outcomes for two separate three year periods, one before and one after implementation of Tier 3.

Here are the factoids:

  • Geriatric volume increased significantly from 1715 to 3688 patients (!!), and more received expedited workup as either a trauma activation or Tier 3
  • There were statistically significant decreases in time to CT (102 vs 128 minutes) and ED length of stay (361 vs 432 minutes) (see my comments)
  • Mortality decreased from 8% to 5% overall, and from 19% to 11% in patients with head AIS > 3, both of which were significant
  • Regression analysis showed that implementation of the Tier 3 response was an independent predictor of improved survival

Bottom line: This poster shows results that suggest having a specific response for select elderly patients who don’t meet trauma activation criteria can be beneficial. However, the devil is in the details. Each center must develop criteria for the Tier 3 response that mesh with their own activation criteria. And the details of that response need to be clinically significantly better than the usual consult response.

Questions and comments for the authors/presenters:

  1. Be careful not to confuse statistical significance with clinical significance. Decreasing mean time to CT from 2:08 to 1:42 is not that big of a deal. The same applies to 7 hours in the ED vs 6.
  2. Please share the Tier 3 criteria and details of the ED response.
  3. Have you modified your Tier 3 criteria and/or response since inception, and if so, how and why?

Click here to go the the EAST 2017 page to see comments on other abstracts.

Related posts:

Reference: “Tier 3”: Long term experience with a novel addition to a two-tiered triage system to expedite care of geriatric trauma patients.. Poster #34, EAST 2017.

EAST 2017 #12: Revaccination Compliance After Splenectomy

The incidence of overwhelming post-splenectomy sepsis, and the need and effectiveness for vaccination after splenectomy is still subject to debate. However, the administration of three vaccines to protect against encapsulated bacteria is a standard of care. For decades, this was a one time thing and the vaccines were usually given before the spelenctomized trauma patient was discharged from the hospital.

Then several years ago, the CDC updated their recommendations to include a booster dose of 23-valent penumococcal vaccine. Trauma professionals have inconsistently advised their patients about this dose, and patients have not reliably sought their booster.

Researchers at Christiana Care in Delaware looked at this potential problem by identifying all of their trauma splenectomy patients over a 10 year period. They were interviewed by phone to determine their understanding of the asplenic state and the need for booster vaccination.

Here are the factoids:

  • During the 10 year period, 267 trauma splenectomies were performed
  • 196 survived, but only 52 agreed to participate (? – see below)
  • Although all patients received vaccines before discharge (!), only 23% were aware that they had
  • Only about half of patients were aware that they may be at risk for infectious complications
  • Only 19% understood they would require a booster dose, and 22% had actually received one (?? – see below)

Bottom line: Although we still aren’t sure how important these vaccines are, vaccination is the standard of care. This study, although a little confusing, shows that we are falling down in educating our patients about the impact of their splenectomy (surgical or via embolization). And it’s difficult for anyone to remember to get a booster shot. Are you up to date on your tetanus vaccination?

This abstract shows us that we need to counsel these patients prior to discharge regarding their at-risk condition. We also need to make sure they (and their primary care provider) are aware that they need to get a pneumococcal booster five years down the road.

News flash! Take a look at page 3 of the CDC recommendations (download here) to see the official recommendations regarding pneumococcal vaccination. It is recommended that PCV-13 vaccine (Prevnar 13) be given first, then the 23-valent vaccine (Pneumovax) 8 weeks later! This complicates things a bit, since both pneumococcal vaccines cannot be given while the patient is still in the hospital. This will reduce the likelihood that patients will get their second pneumococcal vaccine.

Questions and comments for the authors/presenters:

  1. The number of patients is off by one. There were 267 splenectomy patients, 49 died in the hospital and 23 after discharge. 267-49-23=195, not 196.
  2. Only 52 of this 195 agreed to participate. You were able to find all 195? It seems that some of these 143 patients just could not be located.
  3. Please clarify the numbers in my last bullet point. Of the 52 patients, only 9 were aware of the revaccination requirement, and only 1 got it?
  4. This is important work. What have you done to improve these numbers at your hospital?

Click here to go the the EAST 2017 page to see comments on other abstracts.

Related posts:

Reference: Revaccination compliance after trauma splenectomy: a call for improvement. Poster #31, EAST 2017.