All posts by The Trauma Pro

What The Heck?! The Answer!

In my last post, I described an elderly pedestrian struck by a car. During the trauma activation, routine chest and pelvic x-rays were obtained. Here was the pelvic image:

Note the odd oval densities across the center of the x-ray. What the heck? What are they?

There are two choices: they are either inside or outside the patient. We had already removed her clothes, so it wasn’t something she was carrying. And if it was inside, we would be able to identify it on the CT scan we had ordered.

But in this case, the x-ray was done early in the secondary survey. Specifically, we did it before we rolled our patient and examined her back.  When we did, here is what we found:

Only it wasn’t in the box. Or on her neck. This one was stuck on her lower back, but not in her clothes. She was suffering from lower back pain, and applied one of these on a daily basis for comfort. We had not rolled the patient prior to the pelvic x-ray.

The pods on these thermal wraps contain a mixture of iron, sodium chloride, sodium thiosulfate, water, charcoal, and sodium polyacrylate that heat up when removed from their package and exposed to oxygen. The iron renders it somewhat radio-opaque, hence their appearance on the x-ray. We did peel it off prior to CT since it would probably create a significant amount of scatter which would degrade the image.

Should we have waited a few more minutes to get the image until we had rolled and examined the back? This is a judgment call. Since our trauma team moves quickly, we are typically ready to head to the scanner in 15 minutes. In order to improve overall CT scan throughput, we have adopted a 5-minute advance notice policy.  To accomplish this, we don’t want to wait until the very end of the resuscitation to get x-rays. That would end up slowing down our process.

You may feel differently about the timing of the images, or you may have a different method of sequencing your CT scanner. Whatever works best for you. But remember, all trauma patients need to be completely undressed and all of their surfaces, nooks, and crannies inspected before they leave the emergency department!

What The Heck?!

Here’s an interesting case from my image archives.

An elderly female pedestrian was struck by a car. She was hemodynamically stable. During the course of her evaluation as a trauma activation, her clothes were completely removed. (She was kept nice and warm with infrared warmers.)

Early in the secondary survey, chest and pelvic x-rays were obtained. Here is the pelvis image:

What is wrong in this picture?? Leave comments below or tweet your guesses. I’ll publish the answer Friday.

What Is The Safest Extrication Method From A Car Crash?

Today’s post is directed to all those prehospital trauma professionals out there.

Car crashes account for a huge number of injuries world-wide. About 40% of people involved in them are initially trapped in the vehicle. And unfortunately, entrapped individuals are much more likely to die.

There are four basic groups (and their category in parentheses) of trapped car occupants:

  • those who can self-extricate or extricate with minimal assistance (self-extrication)
  • individuals who cannot self-extricate due to pain or their psychological response to the event, but can extricate with assistance (assisted extrication)
  • people who are advised or choose not to self-extricate due to concern for exacerbating an injury, primarily spine (medically trapped)
  • those who are physically trapped by the wreckage who require disentanglement (disentanglement and rescue)

Prehospital providers have several choices to help extricate patients  in the second and third categories: encourage self-extrication, rapid extrication without the use of tools, or traditional extrication where the vehicle is cut away to allow egress. The fourth category always requires tools for extrication.

Although rescue services try to minimize or mitigate unnecessary movement of the patient, stuff happens. Large and forceful movement is considered high risk, but smaller movement do occur. This is of particular concern in patients who might have a spine injury.

There have been a number of recent papers suggesting there might be greater benefits to self-extrication. A group of authors in the UK and South Africa designed a biomechanical study to test these methods of extrication in healthy volunteers.

The authors wanted to find out exactly how much movement occurred using the various extrication techniques. The volunteers were fitted with an Inertial Measurement Unit, which measures the orientation of the head, neck, torso, and sacrum in real time.  The IMU can detect even very small changes in orientation of the body. The volunteers were placed in a standard 5-door hatchback sedans that were prepared for each type of extrication as seen above.

Here are the factoids:

  • A total of 230 extrications were performed for analysis
  • The smallest amount of maximal and total movement of body segments was seen in the self-extrication group
  • The greatest amount of movement was found in the rapid extrication group, with 4x to 5x the movement in the self-extrication group
  • The difference in body movement between the self-extrication group and all others was significant
  • In general, movement increased as extrication techniques progressed from roof removal to B post removal to rapid extrication

The authors concluded that self-extrication resulted in the smallest amount of movement and the fastest extrication time, and that it should be the preferred technique.

Bottom line: This is the first study that specifically evaluated spinal movement occurring with commonly used extrication techniques. Other similar studies have used a variety of measurement techniques, none of which are as precise as this. One potential weakness with this one is that it used healthy volunteers. But obviously, it is not practical to attempt anything like this with real, injured patients. 

Since we know that patients trapped in cars are more likely to die, time is of the essence. This study shows that self-extrication is both fast and safe with respect to spinal movement. The information will assist our prehospital colleagues in making the best decisions possible when faced with patients trapped in their car.

Reference: Assessing spinal movement during four extrication methods: a biomechanical study using healthy volunteers. Scand J Trauma  open access 30: article 7, 2022.

For PI Fans: Cribari, NFTI, And STAT!

I’ve published a two-part series on the Cribari matrix, Need For Trauma Intervention (NFTI), and the Standardized Triage Assessment Tool (STAT). These are performance improvement topics for the real nerds out there and can be found only on my Trauma PI website, TraumaMedEd.com.

If you are interested in optimizing trauma triage and trauma activations at your center, check out my posts by clicking this link:

https://www.traumameded.com/blog/

Optimizing Feedback To Referring Hospitals

The American College of Surgeons requires that referring hospitals provide feedback to prehospital providers and referring hospitals regarding the transfer process.

Failure to do so can actually result in a weakness or deficiency during a site visit. (Psst! Pay attention, referring hospitals if you want to start getting feedback. Read that first sentence again.) Sometimes the feedback is verbal, either in person or by phone. Many receiving centers send written letters outlining care and care issues. But unfortunately, some don’t do it at all, or only very inconsistently.

Harborview Hospital in Seattle is a very busy Level I center, with nearly 6,000 trauma admissions per year. More than half of their patients come from a huge catchment area including Washington state, Wyoming, Alaska, Idaho, and Montana. The amount of work to provide proper feedback on over 3,000 patients annually can be overwhelming.

They implemented a “U-link” program that provided access to patient chart info for the hospital sending each patient. It was HIPAA compliant, and login information was sent within 72 hours of patient arrival.

Here are the factoids:

  • 90 referring hospitals set up the U-link system
  • Care transcripts, radiology reports, and discharge summaries were the most frequently viewed items
  • The most desired feedback was on over- or under-resuscitation (89%), injuries (84%), appropriateness of transfer (78%), and deviation from ATLS protocols (76%)
  • Information was used for education (100%), systems analysis (99%), and performance improvement (PI, 92%)

Bottom line: Your referral partners crave feedback on the patients they send! Develop a system that guarantees it on each patient at a reasonable time after admission. You may or may not be able to link them into your specific electronic medical record, but you can certainly send out informational letters and email!

Reference: Optimizing feedback from a designated Level I trauma/burn center to referring hospitals. JACS 220(1):99-104, 2015.