All posts by The Trauma Pro

25th Reunion Of The Penn Trauma Program

I’m traveling to Philadelphia this week to celebrate the 25th anniversary of the trauma program at the University of Pennsylvania. I am one of the three founding surgeons and have been asked to speak at the academic forum portion of the program. I’ll be talking about three papers that should have changed our practice.

For the remainder of the week I’ll be writing about those three papers. They involve the use of an agent that helps control bleeding, radiation exposure in trauma imaging, and the use of technology developed outside the field of medicine to treat trauma patients.

Tune in as I work my way through those important studies. And on Friday, I’ll be tweeting any important or interesting info presented at the academic forum.

Could Be A Urethral Injury, But The Catheter’s Already In?

You’re seeing a trauma patient, probably a transfer from somewhere else. Either they told you there “may have been” some blood at the tip of the urethra, or maybe you see it smearing the outside of a urinary catheter that’s already in place! How do you proceed from here?

First, try not to get into that situation. Make sure that everyone on your team knows that gross blood at the meatus, male or female, means urethral injury until proven otherwise. If it’s not gross blood, it could be that the patient was incontinent and has hematuria from other causes. The fear with passing a catheter across a urethral injury is that it may convert a partial tear to a complete one. Reconstruction and complications from the latter are far more serious.

But the catheter is there. What to do?

First, leave the catheter in place. You must assume that the injury is present, and you need to rule it in or rule it out in order to decide what to do with the catheter. If the injury is not really there, then you can remove the catheter when indicated. If it really is present, then the urethral injury is being treated appropriately.

Next, do a urethrogram. I’ve previously described how to do it here, but the technique I describe is only appropriate for uncatheterized patients. The technique must be modified to use thin contrast and a method to inject alongside the catheter. To do this, fill a 20-30cc syringe with contrast (Ultravist or similar liquid) and put an 18 gauge IV catheter on the tip (no needles, please). Slide the IV catheter alongside the urinary catheter, clamp the meatus with your fingers, pull the penis to the side and inject under fluoroscopy. The contrast column will not be as vivid as with a regular urethrogram because it is outlining the urinary catheter, so there is less volume.

If the contrast travels the length of the urethra and enters the bladder without leaking out into soft tissue, there is no injury. If there is contrast leakage, stop injecting and plan to call a urologist.

Finally, be on the lookout for associated injuries. Urethral injuries are frequently found in patients with anterior pelvic fractures and perineal injuries.

Related post:

Link: blood at the urethral meatus (Atlas-Emerg-Medicine.org.ua from McGraw-Hill)

Thanks to JP for suggesting this topic!

The better is the enemy of the good

From the poem “The Prude Woman” by Voltaire, 1772.

This adage is particularly important in medicine. Every test and treatment we order has an upside (hopefully) that will reveal something or make our patient better. Unfortunately, we tend to ignore the inescapable downsides, which include cost and unanticipated consequences. These consequences are the discomfort, side effects, and dangers that come with any medical intervention. And in some cases, the results of an unneeded test may be in error or show some red herring that leads us on a wild goose chase of other interventions that compound the danger.

Bottom line: All trauma professionals need to think about everything they do to a patient, especially the risks they will inflict and the benefits that might accrue. Consider how it will influence your care. Will anything that is revealed change what you do? If not, you don’t need it. And your patient certainly doesn’t need the costs and hidden dangers that go along with it.

When Can Your Trauma Patient Stop Taking Warfarin?

I admit it. I read trauma and surgery literature, not medical literature. Imagine my surprise when a fellow physician (internist) told me that there is an objective system for helping us figure out whether anticoagulation is needed for atrial fibrillation. “CHADS2” he said. Am I the last trauma surgeon on earth to hear about this?

CHADS2 is a validated scoring system for predicting stroke risk in people with atrial fibrillation. There are 5 components as follows:

  • C – congestive heart failure – 1 point
  • H – hypertension (treated or untreated) – 1 point
  • A – age >= 75 – 1 point
  • D – diabetes mellitus – 1 point
  • S2 – history of stroke or TIA – 2 points

Stroke risk is directly correlated to the number of points scored. So based on that the recommendations are:

  • Score = 0: low risk, no therapy needed or just take aspirin
  • Score = 1: moderate risk, aspirin or oral anticoagulant
  • Score >= 2: moderate to high risk, take oral anticoagulant

Bottom line: Evaluate every trauma patient on anticoagulation to see if they really need to keep taking it. If it’s for a one-time episode of DVT or PE that happened years ago, they should be able to stop. If it’s for a-fib, check their CHADS2 score and work with their primary care provider to see if they could take aspirin or nothing. Factor in a history of frequent falls or car crashes as well.

Related posts: 

Reference: Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin. Circulation 110 (16): 2287–92, 2004.

Spinal Cord Concussion In Student Athletes

Spinal cord injuries are typically devastating injuries with profound consequences for function and life expectancy. However, a small percentage result in rapidly reversible symptoms. Because these temporary injuries are rare, they tend to cause confusion among clinicians.

Technically, a spinal cord concussion (a “zinger” or “stinger” is an example) is a mild cord injury that results in transient neurologic disturbances. The deficits can be sensory, motor or both, and typically resolve in less than 48 hours. The injuries tend to involve the mid-portion of the cervical cord or the cervico-thoracic junction, since these are the areas of maximum mobility. In a few cases, the athlete has congenital narrowing of the spinal canal which predisposes them to injury. In most cases, the injury probably occurs due to the flexibility of the young spine.

The usual management consists of an MRI of the spine followed by admission and frequent neurologic checks to ensure ongoing resolution. MRI is typically negative in a true concussion. If a signal change is seen, then technically a cord contusion is present. Management is the same for both. There is no indication to give steroids. Evaluation of the ligaments is critical to determine if a collar will be necessary.

Recovery is rapid and complete. But what is the answer to the inevitable question, “when can he/she return to play?” In adult players, the literature suggests that it may be safe to return once they have fully recovered. There is little guidance for kids.

Here’s what I tell the parents: This event has shown that, given the right force applied to your child’s neck, the bones can move enough to injure their spinal cord. This time, the cord was just tickled a little bit. But if the bones had moved just another millimeter or two, this injury could have been permanent and they would never have walked again. I recommend that they do not play this sport again.

Some of you may disagree. I’d be very interested in hearing your comments. 

Reference:

  • First mention: About concussion of the spinal cord. Wein Med Jahrb 34:531, 1879.