All posts by TheTraumaPro

Orthopedic Hardware And TSA Metal Detectors

Many trauma patients require implantable hardware for treatment of their orthopedic injuries. One of the concerns they frequently raise is whether this will cause a problem at TSA airport screening checkpoints (Transportation Safety Administration)

The answer is probably “yes.” About half of implants will trigger the metal detectors, and these days that usually means a pat down search. And letters from the doctor don’t help. It turns out that overall, 38% are detected when the scanner is set to low sensitivity and 52% at high sensitivity. 

Here is a more detailed breakdown:

  • Lower extremity hardware is detected 10 times more often than upper extremity or spine implants
  • 90% of total knee and total hip replacements are detected
  • Upper extremity implants such as shoulder, wrist and radial head replacements are rarely detected
  • Plates, screws, IM nails, and wires usually escape detection
  • Cobalt-chromium and titanium implants trigger alarms more often than stainless steel

 If your patient knows that their implant triggers the detectors, they have two options: request a patdown search, or volunteer to go through the full body millimeter wave scanner. This device looks at everything from the skin outwards, and will not “see” the implant and is probably the preferred choice. If they choose to go through the metal detector and trigger it, they are required to have a patdown. Choosing to go through the body scanner after setting off the detector is no longer an allowed option. 

Reference: Detection of orthopaedic implants in vivo by enhanced-sensitivity, walk-through metal detectors. J Bone Joint Surg Am. 2007 Apr;89(4):742-6.

The Return On Investment Of A Career As An Intensivist

There is a shortage of intensivists in the US, particular in the field of surgical critical care. The are many possible reasons, from “graying” of the workforce and increased workloads to decreased reimbursement and increased legal risks. As usual, money is at the root of most problems in some form or another. So is being an intensivist actually “worth” it, and how do we figure something like that out?

A group at Chapel Hill attacked this question from a financial business/financial standpoint. They looked at the lifetime return on investment of choosing a critical care career compared to non-critical care practitioners in the same fields (surgery, medicine, pediatrics). They included income data, debt burden, opportunity costs and taxes in their analysis.

Using standard financial analysis techniques, the authors found that:

  • The financial value of the career choice of medical and pediatric intensivists was nearly identical to their non-critical care peers
  • The financial value of choosing a surgical critical care career was significantly less than that of a general surgeon
  • The lower value of a surgical critical care career was largely due to the opportunity costs of two years of lower salary during the fellowship
  • The relative value of an academic critical care career was always lower, and was most pronounced among internists

Bottom line: There are many factors that go into the choice of a career in critical care. They include job satisfaction, quality of life, and many other intangibles. But money frequently intrudes into the decision making process. It appears that choosing surgical critical care incurs some degree of financial penalty, and this may  be a factor that will exacerbate the shortage of these specialists.

Reference: The economic impact of intensivist fellowship training. Poster presentation at the EAST annual scientific session, January 2013.

The Three Strikes And You’re Out Airway Rule

Rapid airway control is key in critically injured trauma patients. But too many times, I’ve seen trauma professionals take far too much time to establish one. Here’s a good rule of thumb to use in these situations.

After pre-oxygenating the patient, your first pro gets a crack at it. They generally have the most time available, often 3-5 minutes before sats begin to drop.

In the unlikely situation that they are not successful, strike 1. Stop trying and resume bagging the patient. At this point, someone (trauma surgeon, lead medic) must get the crich set out. Then the next most experienced intubator gets a shot.

If they are not successful, strike 2. Resume bagging and open the crich set.

The most experienced intubator now gets their chance, using any advanced technology available. No success even now? Strike 3, use the crich set!

Bottom line: We should never allow more than 3 airway attempts, and sometimes clinical conditions will dictate fewer tries. Examples that come to mind are severe brain injury patients (hypoxia is bad) and patients who do not recover from oxygen desaturation when they are bagged. Don’t lose track of time and the number of attempts!

Best Of: Paging And The Trauma Pro

People who work in hospitals, particularly physicians, physician assistants, nurse practitioners and residents are throwbacks who still use old-fashioned paging technology. My colleague, the Skeptical Scalpel, recently lamented this fact in one of his blog posts. But they do seem to be a necessary evil, since cellular coverage is often limited deep inside of buildings.

But how much to trauma professionals get paged? An oral presentation at the recent Congress of Neurological Surgeons described a study that monitored paging practices between nurses and neurosurgical residents.

Medical students were paid to follow neurosurgical residents during 8 12-hour call shifts. They recorded the paging number and location, priority, and what the resident was doing when paged. The results were enlightening but not surprising:

  • 55 pages were received per shift, on average, ranging from 33 to 75
  • An average of 5 pages per hour were received, with a range of 2 to 7
  • A substantial number of pages were received during sleep times (4 per hour)
  • It took an average of 1.4 minutes to return the page
  • 68% of pages were non-urgent
  • 65% interrupted a patient care activity
  • An average of 1.1 hours was spent returning pages per shift

Bottom line: Yes, we are throwbacks using an old technology. But it does serve us well. Unfortunately, it’s an old technology being used in an inefficient manner. I recommend that nursing units make it a practice to maintain a “page list” of nonurgent items. The trauma professional can then stop by or call each unit periodically (every 2 hours or some other appropriate time interval) and deal with all of them at once. Obviously, urgent and emergent problems should still be called immediately. This will ensure that routine issues are taken care of in a timely manner and the trauma pro can attend to their other duties as efficiently as possible.

Related posts:

Reference: Oral Paper 113: An Observational Study of Hospital Paging Practices and Workflow Interruption Among On-call Junior Neurosurgery Residents. Presented at the Congress of Neurological Surgeons 2012.

State Laws And Pediatric Firearms Injuries

The US federal government records some basic statistics regarding firearm injuries, mostly related to deaths. However, the Agency for Healthcare Research and Quality maintains a database that contains detailed information on pediatric hospitalizations, including injury information. A group at Tufts University used this database to compare injury trends in pediatric firearm injury (age 0-20) in states with and without a Stand Your Ground law (SYG). Stand Your Ground laws, which many first became aware of after the death of Trayvon Martin in Florida, allow an individual to defend themelves from an unlawful threat without having to retreat first.

The database used was fairly robust. Data were submitted from 44 states, and 4 years were reviewed for the study. Over 19,000 pediatric firearm injury records were analyzed. The following interesting reslts were uncovered:

  • Nearly two thirds were assualts, and 27% were accidental injury.
  • Average length of stay for both mechanisms was about 3 days
  • Hospital cost for assault was $61,000 and for accidental injury was $46,000, per child
  • Children were about 10% more likely to suffer a firearm assault in SYG states
  • Kids in SYG states were also more likely to suffer accidental firearm injury and commit suicide with a firearm(?!)
  • Statistical association of firearm injury with the usual culprits (race, age > 16, male sex, socioeconomic status) was also noted

Bottom line: At best, this is a weak observational study. And of course, it is impossible to say that Stand Your Ground laws are the cause of a greater number of pediatric firearm injuries. The fact that (even greater) increases in accidental injury and suicide were noted points out this weakness even better. Although it is tempting to blame SYG laws on this perceived increase in injuries, it’s not correct. Much better analyses need to occur before we can really draw any actionable conclusions on the effects of these laws..

States with Stand Your Ground laws: AL, AK, AZ, CA, FL, GA, IA, IL, IN, KS, KY, LA, ME, MI, MS, MO, MT, NH, NC, ND, OH, OK,, PA, RI, SC, SD, TN, X, UT, WV, WI, WY