All posts by The Trauma Pro

Cool Device: Noninvasive Spot Check Hemoglobin

I always tell my trainees that “your patient is bleeding to death until you can prove otherwise.” Sometimes bleeding is obvious in our trauma patients and sometimes it isn’t. The usual routine for assessing major trauma patients involves a blood draw, with a high priority on obtaining a specimen for the blood bank. But most centers also get standard analyses on the blood, including CBC, lytes, etc.

But remember, a blood draw is a snapshot. And it’s a snapshot of values that change relatively slowly. This means that you can get suckered into believing that your patient is okay because one set of labs looked pretty normal. And it’s impractical (and uncomfortable) to get labs frequently with repeated needle sticks.

Masimo, a medical equipment manufacturer, has added something extra to the pulse oximeter that you are already familiar with. Using the usual clip-on finger probe, it measures arterial oxygen saturation, pulse rate, perfusion index, and total hemoglobin.

I wrote about this device a year ago after an abstract was presented at EAST. The final paper from the University of Arizona – Tucson has now been published,  and here are the updated factoids:

  • 525 patients were spot-checked, with a success rate of 86% 
  • Spot-check failures were due to nail polish or soot on the nails, sensor fit problems (only one size was available in the study), placement problems due to other imaging equipment, or patient agitation
  • 173 (38%) of patients had a Hgb <= 8
  • The mean difference between spot-check and blood draw results was only 0.3 g/dL (!)
  • Sensitivity was 95%, accuracy 76%

Bottom line: This is an interesting new tool for acute trauma care. The only downside that I see is that we may lose sight of the fact that hemoglobin values lag behind as an indicator of true blood volume in rapidly bleeding patients. We mustn’t be fooled into thinking that everything is fine just because a number is normal. There’s still room for common sense! And don’t start monitoring serial hemoglobins willy nilly in solid organ injury just because you can. You still don’t need it!

Related posts:

Reference: Transforming hemoglobin measurement in trauma patients: noninvasive spot check hemoglobin. J Am Col Surg 220(1):93-98, 2015.

The Two-Sheet Trauma Trick

Hypothermia is always a concern in trauma patients. Even the simple act of completely exposing your patient in the trauma room facilitates it. How do trauma professionals balance the need to see everything with the equally important need to keep the patient warm?

The natural reaction is to cover them up. Sheets and warm blankets are the usual tools. But I always marvel that, as soon as the blanket goes on, there’s always a need to examine something or do some procedure. Look at a wound. Insert a urinary catheter. And every time this happens, the blanket comes off.

Here’s a clever way to deal with this problem. Don’t use just one sheet or blanket. Use two! Fold each one in half, so they are each half-length. Place one on the top half of the patient, the other at the bottom, overlapping slightly at the waist. If you need to look at an extremity, fold the blanket that covers it over from right to left (or left to right) to uncover just the area of interest. To insert a urinary catheter, just open the area at the waist, moving the top sheet up a little, the bottom down a little.

Bottom line: Keep your patient toasty! Use the two-sheet (or warm blanket) trick to avoid hypothermia. Remember, patient temperature begins to drop as soon as the clothes come off! And I don’t recommend the use of one-piece inflatable warming blankets (e.g. Bair Hugger) until the work in the ED is complete, because the whole thing has to be removed every time you need meaningful access to the patient.

Related posts:

New Technology: 3-D Printed Casts For Fractures

I’ve written quite a lot about the promise of medical applications for 3-D printers. Here’s another one for use by trauma professionals.

Look at the good, old-fashioned plaster cast. It’s been around for decades, and serves its purpose well. It’s easy to apply, inexpensive, and reasonably durable.

Then, along came fiberglass. It’s lighter, more durable, and a bit more water-resistant. And not a whole lot more expensive.

But both of these items have drawbacks. They are heavy. It’s best not to get them wet. Their application is very operator dependent. And probably most importantly, they are opaque. This masks any wounds or skin conditions under it for an extended period of time.

Deniz Karasahin, a Turkish student, won a design award for the development of a 3-D printed cast. It used the appearance of cancellous bone as a model, and is aesthetically very cool. A body scanner is used to scan the affected extremity so that the cast can be customized to the patient. The actual cast is printed from plastic, and can be rendered in a variety of colors. It is hinged, and locks together with a simple pin mechanism.

Bottom line: This is an interesting development in 3-D printing. However, it is not for everybody. Cheap plaster and fiberglass casts are very suitable for many patients. But for some, having the ability to inspect the underlying skin or deal with wounds will make this item much more desirable. And keep in mind, this product was developed for aesthetics. The holes can be much larger and still maintain strength and rigidity. So the cast of the future could be mostly holes, making it very light and shower compatible. Many people might be willing to pay a little more for this convenience.

Note: Ignore the LIPUS ultrasound units that can be incorporated into the one in the article. This is still unproven technology and I don’t recommend it.

Reference / photo credit: A’Design Award Competition

Pagers vs Smartphones. Duh!

I wrote about good, old-fashioned pagers yesterday. They are very old, yet reliable technology. But these days, smartphones are all the rage. People walk around everywhere, staring at them. Are they useful in a hospital setting?

image

These days, 90% or so of healthcare providers carry a smartphone. They can transmit and receive much more information than a pager ever could. Would trauma team members at a Level I US trauma center find them valuable? The University of Arizona, Tucson sent a questionnaire to surgeons, residents, and midlevel providers rotating through their trauma service asking them a series of 31 questions about use of these devices.

Here are the factoids:

  • 50 people completed the survey, most of whom (40) were residents. It appears that everyone was forced to return it.
  • 94% were in favor of using it for communications
  • 78% found it easy to use and user friendly
  • 98% believed that it improved speed and quality of communication
  • 98% believed it improved the accessibility of team members
  • 90% felt that it improved physician response time
  • 4% believed that it could not be used due to HIPAA regulations

Bottom line: This is a good example of an unscientific study dressed up to look a little scientific. And it essentially confirms the bias of the researchers. Nonetheless, it is an indicator of where we’re heading with in-hospital and out-of-hospital communications. The days of good, old-fashioned pagers and walkie-talkies are rapidly waning. Smartphones, and whatever follows (Google Glass?), are rapidly replacing them. The only obstacles now are ensuring good signal strength deep inside hospital buildings, and being ever mindful of HIPAA requirements.

Related posts:

Reference: Improving communication in Level I trauma centers: replacing pagers with smartphones. Telemedicine and e-Health, 19(3):150-153, 2013.

Paging And The Trauma Pro

People who work in hospitals, particularly physicians, physician assistants, nurse practitioners and residents are throwbacks who still use old-fashioned paging technology. My colleague, the Skeptical Scalpel, recently lamented this fact in one of his blog posts. But they do seem to be a necessary evil, since cellular coverage is often limited deep inside of buildings.

But how much to trauma professionals get paged? An oral presentation at the recent Congress of Neurological Surgeons described a study that monitored paging practices between nurses and neurosurgical residents.

Medical students were paid to follow neurosurgical residents during 8 12-hour call shifts. They recorded the paging number and location, priority, and what the resident was doing when paged.

Here are the factoids, which were enlightening but not surprising:

  • 55 pages were received per shift, on average, ranging from 33 to 75
  • An average of 5 pages per hour were received, with a range of 2 to 7
  • A substantial number of pages were received during sleep times (4 per hour)
  • It took an average of 1.4 minutes to return the page
  • 68% of pages were non-urgent
  • 65% interrupted a patient care activity
  • An average of 1.1 hours was spent returning pages per shift

Bottom line: Yes, we are throwbacks using an old technology. But it does serve us well. Unfortunately, it’s an old technology being used in an inefficient manner. I recommend that nursing units make it a practice to maintain a “page list” of nonurgent items. The trauma professional can then stop by or call each unit periodically (every 2 hours or some other appropriate time interval) and deal with all of them at once. Obviously, urgent and emergent problems should still be called immediately. This will ensure that routine issues are taken care of in a timely manner and the trauma pro can attend to their other duties as efficiently as possible.

Related posts:

Reference: Oral Paper 113: An Observational Study of Hospital Paging Practices and Workflow Interruption Among On-call Junior Neurosurgery Residents. Presented at the Congress of Neurological Surgeons 2012.