All posts by The Trauma Pro

The Electronic Trauma Flow Sheet – Part 1

I started voicing my concerns about trying to use an electronic trauma flow sheet (eTFS) way back in 2008. There are very few reports in the literature that specifically detail using the EHR as a trauma flow sheet. The first (see reference 1 below) described an early experience with the conversion process. It outlines lessons learned during one center’s experience, and I’ve not seen any published followup from that center.

Now, on to a report of a “positive” experience. A Level I pediatric trauma center made the same change to the eTFS. They designed a custom menu-driven electronic documentation system, once again using Epic. Specific nurses were trained to act as the

electronic scribe, and had to be present at every trauma resuscitation. The goal of the study was to compare completion rates between paper and electronic documentation. One year of experience with each was collected.

Here are the factoids:

  • There were about 200 trauma activations each year that were admitted, and only 50 or so were highest level activations (in a year!)
  • 11 data elements were compared, including treatments prior to arrival, vitals, fluids, primary survey, level and time of activation, patient and surgeon arrival, and disposition
  • The eTFS was better at capturing time of activation, primary survey components, attending arrival time, and fluid administration

Yes. That’s it. They looked at 11 data points. It says nothing about the wealth of other information that has to be recorded and needs to be abstracted or analyzed. And nothing about the reports generated and their utility. Or how much additional time must be spent by the trauma PI program to figure out what really happened. Or how good their paper documentation was in the first place (not so good, apparently). Or the bias of knowing that your documentation under Epic is being scrutinized for the study.

And to get to that level, this hospital had to maintain a complement of highly trained nurses who were facile with their customized Epic trauma narrator. And they had to maintain their skills despite seeing only one highest level trauma activation patient per week, or one activation at any level only every other day.

I’ve had a few discussions with the trauma program manager from this hospital, and I am convinced that they have managed to make it work well at their center. However, I’m not certain that their system can be generalized to hospitals with higher volumes and and degree of staffing restraints.

In my final post of this series, I’ll tell you what I really think about using the electronic trauma flow sheet in your trauma resuscitations, and why.

References:

  1. Using the electronic medical record for trauma resuscitations: is it possible? J Emerg Nursing 36(4):381-384, 2010.
  2. A comparison of paper documentation to electronic documentation for trauma resuscitations at a Level I pediatric trauma center. J Emerg Nursing 41(1):52-56, 2015.

Trauma Patient Stay In The ED After Implementing an Electronic Health Record

So as we discovered, we may spend less time and see fewer patients if we use an EHR. One would think that ED length of stay (LOS) would then increase. But does it?

A 2 year observational study from Greece looked at ED throughput before and after implementation of an electronic trauma documentation system. A total of 101 trauma patients were processed under the paper charting system, and 99 were handled after implementation of the electronic system.

Here are the factoids:

  • Injury severity was high overall, with half going for emergent surgery and an overall mortality rate of about 12%
  • Total ED LOS decreased from 206 to 127 minutes with the EHR
  • This was accomplished by decreasing time between arrival and completion of care from 149 to 100 minutes, and from completion of care to leaving the ED from 47 to 26 minutes

Bottom line: Looks great! Badly hurt patients, moving through the ED at breakneck speed after implementation of an EHR. The problem is that it was not really an EHR, but an “electronic documentation system.” Upon close inspection, this is a homegrown system with very specific functionality for monitoring care, providing checklists, and offering case-specific guidance. This is not the type of complex documentation system one usually thinks of when visualizing an EHR. But it does go to show that well-designed and focused software can be beneficial.

Tomorrow, I’ll start to focus specifically on the electronic trauma flow sheet (eTFS).

Reference: The effect of an electronic documentation system on the trauma patient’s length of stay in an emergency department. J Emerg Nursing 40(5)469-475, 2014.

A Brief History of the Electronic Health Record

The EHR has been around longer than you think. Even before the current desktop style microcomputers existed, a few hospitals implemented early versions of this product. One of the first was the Latter Day Saints Hospital in Salt Lake City. It installed what it called the HELP system, an acronym for Health Evaluation through Logical Programming.

As computing power increased and the size of the computer box and its cost decreased, a series of advances in medical software systems began to occur. In 1983, a software product geared toward resource scheduling was introduced, and became one of the leading applications of its kind. Most people recognize the name Cadence, but few realize that this was one of the earliest product releases from Epic Systems Corporation.

In 1988, the US government contracted out to develop an electronic record system for the military, much of which is still in use today. On a smaller scale, PC type computers were almost 10 years old in 1990 when Microsoft introduced what I consider the first real version of Windows, version 3.0. Epic was once again an innovator, and it released a product called EpicCare for Windows.

Beginning in 2004, there was a move within the government to emphasize implementation of EHRs across the US, spearheaded by President George W. Bush. And as expected, this led to a number of products developed by a variety of software makers. The push to roll out an EHR universally continues to this day, with no end in sight.

Is this a good thing or a bad one? Although much maligned, the EHR can certainly offer benefits. However, like anything touted as a miracle drug or device, there are always downsides. I’ll review both over the course of the week, but my focus will be on one very specific trauma problem: use of the EHR during trauma resuscitation. Many trauma programs either voluntarily adopted the use of an electronic trauma flow sheet (eTFS), or were forced into it by their hospital administration or IT department. Good idea or not?

We shall see…

Trauma And The Electronic Health Record

I’m going to dedicate this week to discussing the impact of the electronic health record (EHR) on trauma care.

First, I’ll talk a little about the history of the EHR, how it came about and why it was “encouraged” of all hospitals. I’ll also look at who the big players are. Next, I’ll review two studies of the impact of the EHR on ED productivity and patient stay.

And finally, I’ll really dig into using an electronic trauma flow sheet that interfaces with the EHR. My thinking has slowly been changing, but not by much. I’ll review my reasons, and talk about the (few) success stories that are out there.

Stay tuned!

How Much Radiation Exposure In Imaging Studies?

Everyone knows that CT scans deliver more radiation than conventional x-ray. But how much does each test really deliver? And how significant is that?

Let me try to put it all into perspective. First, how much radiation are we exposed to just living outside the hospital? Background radiation is everywhere. It consists of radioactive gases (argon) in the air we breathe, radiation from the rocks and other things around us, and cosmic rays blasting through us from space.

In the United States, the average background radiation each of us is exposed to is about 3.1 milliSieverts (mSv). I’ve compiled a table to show the approximate dose delivered by some of the common radiographic studies ordered by trauma professionals. And to keep it real, I’ve calculated how much extra background radiation we would have to absorb, in units of time, to have an equivalent exposure.

Read and enjoy! Remember, doses may vary by scanner, settings, and dose reduction measures used.

Test Dose (mSv) Equivalent background
radiation
Chest x-ray 0.1 10 days
Pelvis x-ray 0.1 10 days
CT head 2 8 months
CT cervical spine 3 1 year
Plain c-spine 0.2 3 weeks
CT chest 7 2 years
CT abdomen/pelvis 10 3 years
CT T&L spine 7 2 years
Plain T&L spine 3 1 year
Millimeter wave
scanner (that hands
in the air TSA thing at
the airport)
0.0001 15 minutes
Scatter from a chest
x-ray in trauma bay
when standing one 
meter from the
patient
0.0002 45 minutes
Scatter from a chest
x-ray in trauma bay
when standing three 
meters from the
patient
0.000022 6 minutes