All posts by The Trauma Pro

Serial Lab Testing: Worthwhile or Worthless? Part 2

Yesterday, I posted a series of sodium levels that were drawn daily. There was no change in clinical status as the levels varied from 131 to 125 and back up.

Now let me give you a bit more information. The patient was actually getting serial checks every 6 hours (or more)! Here’s the updated chart:

Day/Time Na Treatment NaCl per day
Day 1 18:30 131
Day 1 22:54 132 0.9% NS @ 125/hr 3G
Day 2 05:59 133 continues 3G
Day 2 12:19 129 continues
Day 2 17:50 129 continues
Day 3 07:18 127 continues
Day 3 12:09 127 continues
Day 3 17:58 126 continues
Day 3 23:53 126 continues
Day 4 07:45 125 continues
Day 4 11:38 122 2% NS @ 25/hr 6G
Day 4 15:25 125 continues
Day 4 19:31 125 continues
Day 5 00:06 122 continues 6G
Day 5 04:04 126 continues
Day 5 08:01 122 continues
Day 5 11:50 132 stop
Day 5 16:14 126
Day 5 19:26 127
Day 6 00:20 129 9.2G
Day 6 04:42 127 2% NS @ 40/hr
Day 6 08:30 124 continues
Day 6 12:29 127 stop
Day 6 16:16 127 Salt tabs 2G tid
Day 6 20:28 132 continues
Day 7 05:22 134 Salt tabs 2G qid 8G
Day 7 12:33 135 continues
Day 8 07:02 131 stop None
Day 8 13:33 136

Confused? Me, too! This poor person had 30 blood draws in 8 days, with 6 per day for two of those days. Carefully look at the amount of salt given in each 24 hour period, and look at the sodium levels for that day.

See the variability, even when getting high doses of sodium chloride? What does this tell you? Was the salt administration helpful? Was seeing the lab value every 4-6 hours valuable?

Tell me what you think. Leave comments or tweet your opinions. Next, I’ll discuss the known variability of the serum sodium assay, and give you my opinion on the value of serial testing.

Serial Lab Testing: Worthwhile or Worthless?

We’ve all done it at some point. Serial hemoglobin. Serial sodium. Serial serum porcelain levels. What does serial mean to you? And what does it tell us about or patient?

Today and tomorrow, I’d like to present an example from real life. For today, have a look at the daily sodium tests done for a patient with a head injury. The concern was for cerebral salt wasting, which is probably grounds for its own blog post.

So have a look at this series of sodium determinations. It represents serial values based on daily testing.

Day/time Na
Day 1 18:30 131
Day 2 05:59 133
Day 3 07:18 127
Day 4 07:45 125
Day 5 04:04 126
Day 6 04:42 127
Day 7 05:22 134

At what point, if any, would you be concerned with significant hyponatremia, and begin some type of supplementation?

Tomorrow, I’ll provide a little more info on levels and treatment

Don’t Have A Pelvic Binder? Make Your Own! (Video)

During the past two posts, I’ve reviewed the various pelvic binders available and how much they cost. But what can you do if you find yourself in a situation where you need a binder but don’t have one?

It’s time to go MacGyver!

You need three things:

Yes, that’s right. A simple and cheap SAM splint, a tourniquet, and some kind of blade to cut the SAM splint with. Essentially, the SAM splint is the binder and the tourniquet is used to cinch it down in the correct position.

Here’s a video that demonstrates how to do it. Enjoy!

YouTube player

What’s The Best Pelvic Binder? Part 2

Yesterday, I detailed some pelvic binders commonly available in the US. Today, I’ll go through the (little) science there is regarding which are better than others.

And remember, tomorrow I’ll show you how to make a free pelvic binder out of stuff that all medics have in their rig.

There are a number of factors to consider when choosing one of these products. They are:

  • Does it work?
  • Does it hurt or cause skin damage?
  • Is it easy to use?
  • How much does it cost?

It’s difficult to determine how well binders work in the live, clinical setting. But biomechanical studies can serve as a surrogate to try to answer this question. One such cadaver study was carried out in the Netherlands a few years ago. They created one of three different fracture types in pelvis specimens. Special locator wires were placed initially so they could measure bone movement before and after binder placement. All three of the previously discussed commercial binders were used.

Here are the factoids:

  • In fracture patterns that were partially stable or unstable, all binders successfully closed the pelvic ring.
  • None of the binders caused adverse displacements of fracture fragments.
  • Pulling force to achieve complete reduction was lowest with the T-POD (40 Newtons) and highest with the SAM pelvic sling (120 Newtons). The SAM sling limits compression to 150 Newtons, which was more than adequate to close the pelvis.

So what about harm? A healthy volunteer study was used to test each binder for tissue pressure levels. The 80 volunteers were outfitted with a pressure sensing mat around their pelvis, and readings were taken with each binder in place.

Here are the additional factoids:

  • The tissue damage threshold was assumed to be 9.3 kPa sustained for more than 2-3 hours based on the 1994 paper cited below.
  • All binders exceeded the tissue damage threshold at the greater trochanters and sacrum while lying on a backboard. It was highest with the Pelvic Binder and lowest with the SAM sling.
  • Pressures over the trochanters decreased significantly after transfer to a hospital bed, but the Pelvic Binder pressures remained at the tissue damage level.
  • Pressures over the sacrum far exceeded the tissue damage pressure with all binders on a backboard and it remained at or above this level even after transfer to a bed. Once again, the Pelvic Binder pressures were higher. The other splints had similar pressures.

And finally, the price! Although your results may vary due to your buying power, the SAM sling is about $50-$70, the Pelvic Binder $140, and the T-POD $125.

Bottom line: The binder that performed the best (equivalent biomechanical testing, better tissue pressure profile) was the SAM sling. It also happens to be the least expensive, although it takes a little more elbow grease to apply. In my mind, that’s a winning combo. Plus, it’s narrow, which allows easy access to the abdomen and groins for procedures. But remember, whichever one you choose, get them off as soon as possible to avoid skin complications.

References:

  • Comparison of three different pelvic circumferential compression devices: a biomechanical cadaver study. JBJS 93:230-240, 2011.
  • Randomised clinical trial comparing pressure characteristics of pelvic circumferential compression devices in healthy volunteers. Injury 42:1020-1026, 2011.
  • Pressure sores. BMJ 309(6959):853-857, 1994.

What’s The Best Pelvic Binder? Part 1

Several products for compressing the fractured pelvis are available. They range from free and simple (a sheet), to a bit more complicated and expensive. How to decide which product to use? Today, I’ll discuss the four commonly used products. Tomorrow, I’ll look at the science. And on Wednesday, I’ll show you a creative way to make your own free pelvic binder.

First, let’s dispense with the sheet. Yes, it’s very cheap. But it’s not easy to use correctly, and more difficult to secure.

There are three commercial products that are commonly used. First is the Pelvic Binder from the company of the same name (www.pelvicbinder.com). It consists of a relatively wide belt with a tensioning mechanism that attaches to the belt using velcro. One size fits all, so you may have to cut down the belt for smaller patients. Proper tension is gauged by being able to insert two fingers under the binder.

Next is the SAM Pelvic Sling from SAM Medical Products (http://www.sammedical.com). This device is a bit fancier, is slimmer, and the inside is more padded. It uses a belt mechanism to tighten and secure the sling. This mechanism automatically limits the amount of force applied to avoid problems with excessive compression. It comes in three sizes, and the standard size fits 98% of the population, they say.

Finally, there is the T-POD from Pyng Medical (http://www.pyng.com/products/t-podresponder). This one looks similar to the Pelvic Binder in terms of width and tensioning. It is also a cut to fit, one size fits all device. It has a pull tab that uses a pulley system to apply tension. Again, two fingers must be inserted to gauge proper tension.

So those are the choices. Tomorrow, I’ll go over some of the data and pricing so you can make intelligent choices about selecting the right device for you.