Tag Archives: ventriculostomy

ICP Monitoring: Less Is More?

Management of severe traumatic brain injury (TBI) routinely involves monitoring and control of cerebral perfusion pressure. Monitoring is typically accomplished with an invasive monitor, with the extraventricular drain (EVD) and fiberoptic intraparenchymal monitors (IP) being the most common.

The extraventricular drain is preferred in many centers because it not only monitors pressures, but it can also be used to drain cerebrospinal fluid (CSF) to actively try to decrease intracranial pressure (ICP). But could less really be more? Surgeons at Massachusetts General reviewed 229 patients with one of these monitors, looking at outcomes and complications. They found the following interesting results:

  • There was no difference in mortality between the two monitor types
  • The EVD patients did not require surgical decompression as often, possibly because of the ability to decrease ICP through drainage
  • The EVD patients were monitored longer, and had a longer ICU length of stay. This was also associated with a longer hospital length of stay.
  • Complications were much more common in the extraventricular drain group (31%). The most common complications were no drainage / thrombosis (15%) and malposition (10%). Hemorrhage only occurred in 1.6% of patients. 
  • Fiberoptic monitors had a lower complication rate (8%). The most common was malfunction leading to loss of monitoring (12%). Hemorrhage only occurred in 0.6% of patients.

Bottom line: Don’t change your monitoring technique yet. Much more work needs to be done to flesh out this small retrospective study. But it should prompt us to take a critical look for better indications and contraindications for each type of monitor.

Reference: Intraparenchymal versus extracranial ventricular drain intracranial pressure monitors in traumatic brain injury: less is more?J Am Coll Surg 214(6):950-957, 2012.

Antibiotics For Ventriculostomy

There is some variability in how neurosurgeons manage ventriculostomy when it comes to antibiotic coverage. The catheter can become a conduit for bacterial infections of the meninges or brain, which can be life threatening. Most neurosurgeons will begin coverage at the time of catheter insertion, but the duration of treatment varies. What is the right answer, if any?

As is typical with most things related to head trauma, there are not a lot of good studies out there. Columbia University published a fairly comprehensive review of previous studies last year to help clarify this issue. They applied rigorous criteria to identify 10 relevant studies (3 randomized clinical trials and 7 observational studies) out of a pool of 347. Yes folks, this gives you an idea of how tough it is to answer good clinical questions from the stuff that gets published.

The study found that the use of either prophylactic antibiotics or antibiotic-coated external ventricular drains (EVD) decreased the number of infections by 68%. This result was consistent across both study designs. The authors could not show that one mode of antibiotic administration (systemic vs catheter coating) was better than the other. About half of the studies used antibiotics for the duration of the catheter; the other half did not specify.

Bottom line: Head injury patients with an EVD should receive antibiotics, either systemically or as a coating on the EVD catheter itself. Although not entirely clear, they should probably be given for the entire time the catheter is in place. Judgment must be used if this will be a long time, because there may be other adverse effects from giving long term antibiotics.

Reference: Prevention of Ventriculostomy-Related Infections With Prophylactic Antibiotics and Antibiotic-Coated External Ventricular Drains: A Systematic Review. Neurosurgery 68(4):996-1005, 2011.

ICP Monitoring: Less Is More?

Management of severe traumatic brain injury (TBI) routinely involves monitoring and control of cerebral perfusion pressure. Monitoring is typically accomplished with an invasive monitor, with the extraventricular drain (EVD) and fiberoptic intraparenchymal monitors (IP) being the most common.

The extraventricular drain is preferred in many centers because it not only monitors pressures, but it can also be used to drain cerebrospinal fluid (CSF) to actively try to decrease intracranial pressure (ICP). But could less really be more? Surgeons at Massachusetts General reviewed 229 patients with one of these monitors, looking at outcomes and complications. They found the following interesting results:

  • There was no difference in mortality between the two monitor types
  • The EVD patients did not require surgical decompression as often, possibly because of the ability to decrease ICP through drainage
  • The EVD patients were monitored longer, and had a longer ICU length of stay. This was also associated with a longer hospital length of stay.
  • Complications were much more common in the extraventricular drain group (31%). The most common complications were no drainage / thrombosis (15%) and malposition (10%). Hemorrhage only occurred in 1.6% of patients. 
  • Fiberoptic monitors had a lower complication rate (8%). The most common was malfunction leading to loss of monitoring (12%). Hemorrhage only occurred in 0.6% of patients.

Bottom line: Don’t change your monitoring technique yet. Much more work needs to be done to flesh out this small retrospective study. But it should prompt us to take a critical look for better indications and contraindications for each type of monitor.

Reference: Intraparenchymal versus extracranial ventricular drain intracranial pressure monitors in traumatic brain injury: less is more? Presented at the 34th Annual Residents Trauma Papers Competition at the American College of Surgeons 89th Annual Meeting, March 10, 2011, Washington DC.

What INR is Safe for Ventriculostomy Placement?

Intracranial pressure monitoring has been shown to benefit patients with severe brain injuries. Neurosurgeons are reluctant to place these invasive monitors in patients with abnormal coagulation studies, and many times expect the coags to be completely normal. Is this reasonable? Brain injury itself can raise the INR. When is it safe to place one of these monitors?

Researchers at the University of Alabama – Birmingham performed a retrospective review of their experience with 71 patients who underwent ventriculostomy with a range of INR values. None of these patients were on warfarin. Eighty one ventriculostomies were performed after an average of 1.5 attempts. They looked at the incidence of new hemorrhage seen on CT after placement. They found:

  • Patients with an INR < 1.2 had a 9% incidence
  • Patients with an INR from 1.2 to 1.4 had a 4 % incidence
  • Patients with an INR > 1.4 had an 8% incidence

If the neurosurgeon, is unwilling to place the ventriculostomy until the INR is normalized, there may be several additional sources of morbidity:

  • Additional brain injury that is not known and treated due to the lack of an ICP monitor
  • Potential infectious and other complications (transfusion reaction, TRALI) from plasma administration
  • Cost for the transfusion products

The patients who did have hemorrhage generally had a small focal area. The one significant hemorrhage occurred in a patient on clopidogrel (Plavix). 

Bottom line: The numbers are small, and this is retrospective work. Based on their study, the authors are comfortable placing ventriculostomies in patients not on Coumadin with an INR up to 1.6 without plasma administration beforehand. Colpidogrel should be considered as a separate risk factor.

Reference: The relationship between INR and development of hemorrhage with placement of ventriculostomy. Bauer DF et al. J Trauma, in Press Aug 27, 2010.