Tag Archives: thoracostomy

Can Chest Tube Insertion Result In Exposure To Coronavirus?

Endotracheal intubation is considered an aerosol-producing procedure. In this new age of SARS-CoV-2 and COVID-19, most hospitals are stepping up the level of personal protective equipment (PPE) used when performing this procedure. This has also resulted in modifications in the location where intubation is performed and the choice of drugs used.

But what about needle and chest thoracostomy? These are different than intubation in that the respiratory tract is usually not directly accessed. However, there is the opportunity for exposure to pleural fluid. In the case of needle thoracostomy, it is possible that air under pressure in the chest can force tiny droplets or even an aerosol out and into the air. There is less likelihood of aerosolization during tube thoracostomy, where liquid and droplet exposure can be anticipated.

What do we know about pleural fluid and the novel coronavirus? Basically nothing. And there is very little literature out there regarding other respiratory viruses in pleural fluid either. The only paper I could find (reference below) was published five years ago by a Spanish group. They compared the presence of bacteria and viruses in the pleural fluid of patients with community acquired pneumonia against an uninfected control group. They found only one incidence of virus in the pleural fluid in one patient, a human metapneumovirus. Is this comforting? Probably not.

Trauma patients with chest trauma are likely very different. Those with a hemo- or pneumo-thorax, by definition, had some violation of the surface of the lung. to cause the leak This injury is very likely to breach alveoli which are laden with coronavirus, thus contaminating the pleural fluid. Once that occurs, it is possible that the entire thorax surrounding the lung is contaminated. Note: this is one of those “common sense” assumptions with absolutely no data currently to back it up.

Bottom Line: This is yet another of the many questions about SARS-CoV-2 that we just don’t have an objective answer to. However, since we are already limiting exposure during or forgoing laparoscopic procedures altogether to avoid vaporizing viral particles in smoke, it makes sense to protect ourselves during procedures that involve pleural fluid in trauma patients.

Until we have more data, needle and tube thoracostomy procedures should be considered at least a droplet-prone procedure, if not an aerosol-producing one. This means that trauma professionals should don appropriate personal protective equipment as dictated by their local policies and procedures before performing these procedures.

Reference: Detection of bacteria and viruses in the pleural effusion of children and adults with community-acquired pneumonia. Future Microbiology 10(6):909-916, 2015.

Imaging After Chest Tube: Why Do It?

More dogma, or is it actually useful? Any time a chest tube (tube thoracostomy) is inserted, we automatically order a chest x-ray. Even the ATLS course recommends obtaining an image after placement. But anything we do “automatically” is grounds for critical analysis to see if there is a valid reason for doing it.

A South African group looked at the utility of this practice retrospectively in 1004 of their patients. They place 1042 tubes. Here are the factoids:

  • Patients were included if they had at least one chest x-ray obtained after insertion
  • Patients were grouped as follows: Group A (10%) had the tube inserted on clinical grounds with no pre-insertion x-ray (e.g. tension pneumothorax). Group B (19%) had a chest x-ray before and had ongoing clinical concerns after insertion. Group C (71%) had a chest-xray before and no ongoing concerns.
  • 75% of injuries were penetrating (75% stab, 25% GSW), 25% were blunt
  • Group A (insertion with pre-x-ray): 9% had post-insertion findings that prompted a management change (kinked, not inserted far enough)
  • Group B (ongoing clinical concerns): 58% required a management change based on the post-x-ray. 33% were subcutaneous or not inserted far enough (!!)
  • Group C (no ongoing clinical concerns): 32 of 710 (5%) required a management change, usually because the tube was too deep

The authors concluded that if there are no clinical concerns (tube functioning, no clinical symptoms) after insertion, then a chest x-ray is not necessary.

Bottom line: But I disagree with the authors! Even with no obvious clinical concerns, the tube may not be functioning for a variety of reasons. Hopefully, this fact would then be discovered the next day when another x-ray is obtained. But this delays the usual progression toward removing the tube promptly by at least one day. It increases hospital stay, as well as the likelihood of infection or other hospital-associated complication. A chest x-ray is cheap compared to a day in the hospital, which would potentially happen in 5% of these patients. I recommend that we continue to obtain a simple one-view chest x-ray after tube insertion.

Tomorrow: Look at the chest x-ray. Is it a good chest tube?

The next day: What if you placed the chest tube in your resuscitation room and are planning to go to CT for additional imaging? Is it worthwhile getting a chest x-ray, or should you just check the tube with the CT scan?

Related posts:

Chest X-Ray After Chest Tube: Why Do We Do It?

More dogma, or is it actually useful? Any time a chest tube (tube thoracostomy) is inserted, we automatically order a chest x-ray. Even the ATLS course recommends obtaining an image after placement. But anything we do “automatically” is grounds for critical analysis to see if there is a valid reason for doing it. 

A South African group looked at the utility of this practice retrospectively in 1004 of their patients. They place 1042 tubes. Here are the factoids:

  • Patients were included if they had at least one chest x-ray obtained after insertion
  • Patients were grouped as follows: Group A (10%) had the tube inserted on clinical grounds with no pre-insertion x-ray (e.g. tension pneumothorax). Group B (19%) had a chest x-ray before and had ongoing clinical concerns after insertion. Group C (71%) had a chest-xray before and no ongoing concerns.
  • 75% of injuries were penetrating (75% stab, 25% GSW), 25% were blunt
  • Group A (insertion with pre-x-ray): 9% had post-insertion findings that prompted a management change (kinked, not inserted far enough)
  • Group B (ongoing clinical concerns): 58% required a management change based on the post-x-ray. 33% were subcutaneous or not inserted far enough (!!)
  • Group C (no ongoing clinical concerns): 32 of 710 (5%) required a management change, usually because the tube was too deep

The authors concluded that if there are no clinical concerns (tube functioning, no clinical symptoms) after insertion, then a chest x-ray is not necessary. 

Bottom line: But I disagree with the authors! Even with no obvious clinical concerns, the tube may not be functioning for a variety of reasons. Hopefully, this fact would then be discovered the next day when another x-ray is obtained. But this delays the usual progression toward removing the tube promptly by at least one day. It increases hospital stay, as well as the likelihood of infection or other hospital-associated complication. A chest x-ray is cheap compared to a day in the hospital, which would potentially happen in 5% of these patients. I recommend that we continue to obtain a simple one-view chest x-ray after tube insertion.

Related posts: