Tag Archives: technology

Minority Report In The OR

The movie “Minority Report” showed an interesting way to manipulate visual data using hand gestures. It required a special glove and used large transparent display surfaces. Microsoft has helped make this achievement both easy and cheap using their Kinect controller using a combination of visual and infrared imaging.

Now Siemens Healthcare has embraced this technology and developed a hands-off image manipulation system for use in the OR. The Kinect system projects an infrared grid into the room and records them using an offset camera. This allows the system to construct a 3D representation of objects in the room. The Kinect software can identify movements and objects using this data.

Siemens is using special software with the Kinect that allows it to detect and interpret fine movement of a surgeon’s hands in the operating room. The final product will allow a surgeon to browse, pan and zoom relevant patient images while they remain scrubbed and sterile, just by gesturing with their hands. This product will be tested in two hospitals in the near future.

Here’s my prediction: why will we need a big, clunky robotic system interface like DaVinci? Just have the surgeon sit in a comfortable chair, waving their hands to move the laparoscopic camera and instruments. I see especially interesting applications of this technology in military settings and in space!

Reference: Siemens Game Console Technology

New Technology: Fracture Putty

Fracture healing takes a long time, as many of our patients can attest to. Six or eight weeks, and even more may be required for full healing. Researchers at the University of Georgia and in Houston have completed an animal study on rats using a type of “fracture putty” that dramatically speeds up this process. 

The researchers used adult mesenchymal stem cells that produce a protein which is involved in bone healing and regeneration. They created a gel using these cells, and injected them into the fracture sites which were stabilized externally (imagine a rat external fixator!). The fractures healed rapidly, and within 2 weeks the rats could run and stand on their legs normally.

Bottom line: The next step is to translate this work to larger animals. Strength and durability are major concerns. The amount of stress placed on rat legs and human legs is considerably different. If this pans out, it could revolutionize fracture healing, especially in cases where there may be highly disabling segmental bone loss (read: military). It will be several years before this can move to human studies.

Reference: University of Georgia Regenerative Bioscience Center

Using A 3D Printer To Plan Orthopaedic Surgery

I’ve previously written about new printing technology applications in trauma. A recent article details a new way to use 3D printing technology for planning complex orthopaedic procedures.

An orthopedic registrar in Monklands Hospital (North Lanarkshire, Scotland) found a way to combine new printing technology and orthopaedics. CT scans are routinely taken of complex fractures. Scanners now have powerful software that enables us to create 3D reconstructions from the helical or axial images. However, these are just a series of 2D images viewed on a computer monitor.

Mr. Mark Frame found a way to convert the CT information into a format that can be used as input for a 3D printer. Using two open source (free) software packages for the Mac, OsiriX and MeshLab, he was able to create a medical quality 3D image file. The file was sent to a company that printed it using a 3D printer.

The cost? About $235 US plus a little time for a complete model of the pelvis. The advantage? The actual size 3D model can be used to select hardware and practice the repair technique. And the cost to own a 3D printer keeps coming down!

Related posts:

Technology: EEG Monitoring Using A Smartphone App

Remember when EEG monitoring in patients with severe TBI looked like a maze of multicolored spaghetti plugged into a small refrigerator? Well, technology is advancing rapidly and the hardware is shrinking fast.

This EEG monitor uses an EEG headset, which has fewer leads than the old standard. The headset connects to a Nokia smartphone using a wireless connection. And while it can’t compete with a regular EEG on fine detail like localizing seizure foci, it should easily be able to measure something as crude as burst suppression in trauma patients in pentobarb coma.

EEG headset

Expect more advances like this. Computing and monitoring is leaving the realm of the dedicated (and physically large) device, and moving toward handheld monitoring using off-the-shelf hardware like smartphones.

Technology: The VeinViewer

I’m always interested in technology that makes what we do easier. Here’s an objective look at an interesting machine that’s been around for a while. It uses near-infrared light to detect skin temperature changes to allow it to map out veins. It then projects an image of the map in real time onto the skin. In theory, this should make IV starts easier (as long as you can keep your head out of the way of the projector).

A paper just published from Providence, Rhode Island looked at this device to see if it could simplify IV starts in a tertiary pediatric ED. It was a prospective, randomized sample of 323 children from age 0 to 17 looking at time to IV placement, number of attempts, and pain scores.

Unfortunately, the authors did not find any differences. They found that nearly 80% of IVs were started on the first attempt with or without the VeinViewer, which is less than the literature reported 2-3 attempts. This is most likely due to the level of experience of the nurses in this pediatric ED. 

The authors did a planned subgroup analysis of the youngest patients (age 0-2) and found a modest decrease in IV start time (46 seconds) and the nurse’s perception of the child’s pain. Interestingly, the parents did not appreciate a difference in pain between the two groups. This may be due to the VeinViewer’s pretty green display acting as distraction therapy for the child.

Bottom line: This paper points out the importance of carefully reviewing all new (read: expensive at about $20,000 each) technology before blindly implementing it. In this case, an expensive peice of equipment can’t improve upon what an experienced ED nurse can already accomplish.

Reference: VeinViewer-assisted intravenous catheter placement in a pediatric emergency department. Acad Emerg Med, published online, doi: 10.1111/j.1553-2712.2011.01155.x, 2011.

I have no financial interest in Christie Digital Systems, distributor of the VeinViewer Vision®.