Tag Archives: ambulance

Trauma Patient Transport By Police, Not EMS

When I was at Penn 30+ years ago, I was fascinated to see that police officers were allowed to transport penetrating trauma patients to the hospital. They had no medical training and no specific equipment. They basically tossed the patient into the back seat, drove as fast as possible to a trauma center, and dropped them off. Then they (hopefully) hosed down the inside of the squad car.

Granted, it was fast. But did it benefit the patient? The trauma group at Penn decided to look at this to see if there was some benefit (survival) to this practice. They retrospectively looked at 5 years of data in the mid-2000’s, thus comparing the results of police transport with reasonably state of the art EMS transport.

They found over 2100 penetrating injury transports during this time frame (!), and roughly a quarter of those (27%) were transported by police. About 71% were gunshots vs 29% stabs.

Here are the factoids:

  • The police transported more badly injured patients (ISS=14) than EMS (ISS=10)
  • About 21% of police transports died, compared to 15% for EMS
  • But when mortality was corrected for the higher ISS transported by police, it was equivalent for the two modes of transport

Although they did not show a survival benefit to this practice, there was certainly no harm done. And in busy urban environments, such a policy could offload some of the workload from busy EMS services.

Bottom line: Certainly this is not a perfect paper. But it does add more fuel to the “stay and play” vs “scoop and run” debate. It seems to lend credence to the concept that, in the field, less is better in penetrating trauma. What really saves these patients is definitive control of bleeding, which neither police nor paramedics can provide. Therefore, whoever gets the patient to the trauma center in the least time wins. And so does the patient.

Related posts:

Reference: Injury-adjusted mortality of patients transported by police following penetrating trauma. Acad Emerg Med 18(1):32-37, 2011.

Hitting The Brakes May Increase Intracranial Pressure During The Ambulance Ride!

One of the most common injuries encountered by trauma professionals is blunt head trauma, and it’s one of the leading causes of death in young people. Keeping the level of intracranial pressure (ICP) within a specified range is one of the basic tenets of critical neurotrauma care in these patients. Most trauma centers have sophisticated algorithms that provide treatment guidance for various levels of ICP or cerebral perfusion.

The vast majority of patients with severe head injuries are transported to the hospital in some type of ambulance. Obviously, the exact ICP level is not known during transport because no monitoring device is present. We can sometimes infer that ICP is elevated if the patient has a Cushing response (wide pulse pressure and bradycardia) or unequal pupils. But for the most part, we assume that ICP is in a steady state during the ambulance ride.

But here’s something I never considered before: can ambulance acceleration or deceleration change the ICP through shifting of the brain or cerebrospinal fluid?

Patients are generally loaded into ambulances head-first, with their feet toward the back door. Frequently, they must be positioned supine in consideration of possible thoracic or lumbar spine injury. This position itself may lead to an increase in ICP. But what happens when the ambulance is hitting the brakes as it approaches a light or stop sign? As the patient’s weight shifts toward the top of the head, so does the CSF, spinal cord, and brain. Couldn’t this, too, increase ICP?

The anesthesiology group at the Erasmus Medical Center in Rotterdam, Holland performed a very novel study to assess this very thing. They recruited twenty participants in whom they evaluated ICP in various positions during acceleration and deceleration.
No, the subjects did not have an actual invasive ICP monitor inserted.

The authors used a novel way to infer pressures: optic nerve sheath diameter (ONSD). The optic nerves are direct extensions of the brain, and CSF travels freely in the nerve sheath. As ICP rises, the diameter of the nerve sheath increases. The subjects were fitted with a special helmet with two devices mounted on it. The first was a 7.5 Mhz ultra-sound probe focused on the back of the eye. The second was an arm with an orange dot on the end. This was adjusted so that the ultrasound probe was pointing at the optic nerve sheath when the other eye was focused on the dot. Subjects just watched the dot and measurements streamed in! Crude but very effective.

Baseline measurements were taken without acceleration or deceleration, then repeated when accelerating to 50 km/hr and decelerating to a stop.

Here are the factoids:

  • A total of 20 subjects were tested, and their oxygen saturation, blood pressure, and pulse were identical pre- and post-test
  • Baseline ONSD was about 5mm; a relevant change in diameter was determined to be more than 0.2 mm
  • Lying supine, the ONSD in nearly all subjects increased from an average 4.8 to 6.0 mm during deceleration
  • With the head raised to 30º, most values remained steady (from 4.8 to 4.9 mm) during deceleration

The left block shows the increase in size of the optic disk with braking while supine. The right one demonstrates that this effect is neutralized by elevating the head 30º.

Bottom line: This is a small, simple, and creative study, yet the results are very interesting! It is clear that optic nerve sheath diameter increases significantly during deceleration in patients who are supine. And this effect is eliminated if the head of bed is elevated 30º.

Unfortunately, we have no idea how the change in ONSD corresponds to absolute values of, or relative increases in, ICP. Does a change of 1.2mm indicate a 5 torr increase in ICP? A 5% increase? Is it proportional to the absolute ICP? We just don’t know.

But the data is clear that a measurable change does occur. Until better data is available, it may be desirable to transport patients with serious head injuries with the head elevated to 30º if there are no concerns for lower spine injury. Or failing that, make sure the driver does not have a lead foot!

Reference: Ambulance deceleration causes increased intra cranial pressure in supine position: a prospective observational prove of principle study. Scand J Trauma Open Access 29:87, 2021.

Uber / Lyft For Medical Transport???

In this day and age of ride sharing apps like Uber and Lyft, it is possible to get a cheap ride virtually anywhere there is car service and a smart phone. And of course, some people have used these services for transportation to the hospital in lieu of an ambulance ride. What might the impact be of ride services on patient transport, for both patient and EMS?

Ambulance rides are expensive. Depending on region, they may range from $500-$5000. And although insurance may reduce the out of pocket cost, it can still be expensive. So what are the pros vs the cons of using Uber or Lyft for medical transport?

Pros:

  • Ride shares are inexpensive compared to an ambulance ride
  • They may arrive more quickly because they tend to circulate around an area, as opposed to using a fixed base
  • Riders may select their preferred hospital without being overridden by EMS (although it may be an incorrect choice)
  • May reduce EMS usage for low acuity patients

Cons:

  • No professional medical care available during the ride
  • May end up being slower due to lack of lights and siren
  • Damage fees of $250+ for messing up the car

A very interesting paper suggests that ambulance service calls decreased by 7% after the introduction of UberX rides.  The authors mapped out areas where UberX rides were launching, and examined emergency response data in these areas. They used a complex algorithm to examine trends over time in over 700 cities in the US, and used several techniques to try to account for other factors. Here is a chart of the very fascinating results:

Bottom line: Uber and Lyft are just another version of the “arrival by private vehicle” paradigm. Use of these services relies on the customer/patient having very good judgment and insight into their medical conditions and care needs. And from personal experience, this is not always the case. I would not encourage the general public to use these services for medical transport, and neither do the companies themselves!

Reference: Did UberX Reduce Ambulance Volume? Health Econ 28(7)L817-829, 2019.

Uber / Lyft For Medical Transport???

Yesterday I discussed nonstandard first responders (police). Today I’ll share some info on nonstandard ambulances.

In this day and age of ride sharing apps like Uber and Lyft, it is possible to get a cheap ride virtually anywhere there is car service and a smart phone. And of course, some people have used these services for transportation to the hospital in lieu of an ambulance ride. What might the impact be of ride services on patient transport, for both patient and EMS?

A paper in preparation suggests that ambulance service calls decreased by 7% after the introduction of UberX rides. Now, there are a lot of questions here, because the full paper has not yet been peer reviewed, and the results write-up is pretty sketchy. But it does beg the question.

Ambulance rides are expensive. Depending on region, they may range from $500-$5000. And although insurance may reduce the out of pocket cost, it can still be expensive. So what are the pros vs the cons of using Uber or Lyft for medical transport?

Pros:

  • Ride shares are inexpensive compared to an ambulance ride
  • They may arrive more quickly because they tend to circulate around an area, as opposed to using a fixed base
  • Riders may select their preferred hospital without being overridden by EMS (although it may be an incorrect choice)
  • May reduce EMS usage for low acuity patients

Cons:

  • No professional medical care available during the ride
  • May end up being slower due to lack of lights and siren
  • Damage fees of $250+ for messing up the car

Bottom line: Uber and Lyft are just another version of the “arrival by private vehicle” paradigm. Use of these services relies on the customer/patient having very good judgment and insight into their medical conditions and care needs. And from personal experience, this is not always the case. I would not encourage the general public to use these services for medical transport, and neither do the companies themselves!

Reference: Did UberX Reduce Ambulance Volume? Unpublished paper, October 24, 2017.

(This paper remains unpublished! Hmm… but the link will take you to a copy of the manuscript)

Trauma Patient Transport By Police, Not EMS

When I was at Penn 30+ years ago, I was fascinated to see that police officers were allowed to transport penetrating trauma patients to the hospital. They had no medical training and no specific equipment. They basically tossed the patient into the back seat, drove as fast as possible to a trauma center, and dropped them off. Then they (hopefully) hosed down the inside of the squad car.

Granted, it was fast. But did it benefit the patient? The trauma group at Penn decided to look at this to see if there was some benefit (survival) to this practice. They retrospectively looked at 5 years of data in the mid-2000’s, thus comparing the results of police transport with reasonably state of the art EMS transport.

They found over 2100 penetrating injury transports during this time frame (!), and roughly a quarter of those (27%) were transported by police. About 71% were gunshots vs 29% stabs.

Here are the factoids:

  • The police transported more badly injured patients (ISS=14) than EMS (ISS=10)
  • About 21% of police transports died, compared to 15% for EMS
  • But when mortality was corrected for the higher ISS transported by police, it was equivalent for the two modes of transport

Although they did not show a survival benefit to this practice, there was certainly no harm done. And in busy urban environments, such a policy could offload some of the workload from busy EMS services.

Bottom line: Certainly this is not a perfect paper. But it does add more fuel to the “stay and play” vs “scoop and run” debate. It seems to lend credence to the concept that, in the field, less is better in penetrating trauma. What really saves these patients is definitive control of bleeding, which neither police nor paramedics can provide. Therefore, whoever gets the patient to the trauma center in the least time wins. And so does the patient.

Related posts:

Reference: Injury-adjusted mortality of patients transported by police following penetrating trauma. Acad Emerg Med 18(1):32-37, 2011.