Category Archives: Solid organ

Does Trauma Center Level Make A Difference In Treating Solid Organ Injury?

In the last two posts, I reviewed contrast anomalies in solid organs, specifically the spleen. Today, I’ll be more general and examine a recent paper that compared management and outcomes after the other major solid organ injury, liver, at Level I vs Level II trauma centers.

There are several papers that have detailed overall differences in outcomes, and specifically mortality, at Level I and II centers. Some of these show outcomes that are not quite as good at Level II centers when compared to Level I. On paper, it looks like these two levels should be very similar. Take away research and residents, and maybe a few of the more esoteric capabilities like reimplantation, and aren’t they about the same?

Well, not really. They can be, though. Level I criteria are fairly strict, and the variability between difference Level I centers is not very great. Level II criteria are a bit looser, and this allows more variability. Many Level II centers function very much like a Level I, but a few are only a bit higher functioning than a Level III with a few extra surgical specialists added in.

A paper currently in press used the Michigan Trauma Quality Improvement Program (MTQIP) data from all 29 ACS verified Level I and II centers in the state (wow!). Six years of information was collected, including the usual demographics, outcome data, and management. A total of 538 patients met inclusion criteria, and this was narrowed down to 454 so statistical comparisons of similar patients could be made for Level I vs Level II centers.

Here are the factoids:

  • Mortality was significantly higher in Level II centers compared to Level I (15% vs 9%) and patients were more likely to die in the first two days, suggesting hemorrhage as the cause
  • Patients were more likely to die in the ED at Level II centers, despite a significantly lower Injury Severity Score (ISS)
  • Pneumonia and ARDS were significantly more likely to develop in Level II center patients
  • Level II centers used angiography less often and took patients to the OR more frequently
  • Level II centers admitted fewer patients to the ICU, but ICU admission was associated with significantly decreased mortality
  • Complications were fewer at Level II centers, but they were less likely to rescue patients when they occurred

Bottom line: Level I and II centers are supposed to be roughly the same, at least on paper. But a number of studies have suggested that there are more disparities than we think. Although this paper is a retrospective review, the sheer number of significant differences and its focus on one particular injury makes it more compelling.

So what to do? Tighten up the ACS Orange Book criteria? That’s a slow and deliberate process that won’t help our patients now. The quickest and most effective solution is for all centers to adopt uniform practice guidelines so they all perform like the highly successful Level I programs in the study. There are plenty of them around. If you are not yet using one, I urge you to have a look at the example below. Tweak it to fit your center. And use your PI program to trend the outcomes!

Related post:

Reference: Variability in Management of Blunt Liver Trauma and Contribution of Level of ACS-COT Verification Status on Mortality. J Trauma, in press, Dec 1, 2017.

Print Friendly, PDF & Email

EAST 2017 #12: Revaccination Compliance After Splenectomy

The incidence of overwhelming post-splenectomy sepsis, and the need and effectiveness for vaccination after splenectomy is still subject to debate. However, the administration of three vaccines to protect against encapsulated bacteria is a standard of care. For decades, this was a one time thing and the vaccines were usually given before the spelenctomized trauma patient was discharged from the hospital.

Then several years ago, the CDC updated their recommendations to include a booster dose of 23-valent penumococcal vaccine. Trauma professionals have inconsistently advised their patients about this dose, and patients have not reliably sought their booster.

Researchers at Christiana Care in Delaware looked at this potential problem by identifying all of their trauma splenectomy patients over a 10 year period. They were interviewed by phone to determine their understanding of the asplenic state and the need for booster vaccination.

Here are the factoids:

  • During the 10 year period, 267 trauma splenectomies were performed
  • 196 survived, but only 52 agreed to participate (? – see below)
  • Although all patients received vaccines before discharge (!), only 23% were aware that they had
  • Only about half of patients were aware that they may be at risk for infectious complications
  • Only 19% understood they would require a booster dose, and 22% had actually received one (?? – see below)

Bottom line: Although we still aren’t sure how important these vaccines are, vaccination is the standard of care. This study, although a little confusing, shows that we are falling down in educating our patients about the impact of their splenectomy (surgical or via embolization). And it’s difficult for anyone to remember to get a booster shot. Are you up to date on your tetanus vaccination?

This abstract shows us that we need to counsel these patients prior to discharge regarding their at-risk condition. We also need to make sure they (and their primary care provider) are aware that they need to get a pneumococcal booster five years down the road.

News flash! Take a look at page 3 of the CDC recommendations (download here) to see the official recommendations regarding pneumococcal vaccination. It is recommended that PCV-13 vaccine (Prevnar 13) be given first, then the 23-valent vaccine (Pneumovax) 8 weeks later! This complicates things a bit, since both pneumococcal vaccines cannot be given while the patient is still in the hospital. This will reduce the likelihood that patients will get their second pneumococcal vaccine.

Questions and comments for the authors/presenters:

  1. The number of patients is off by one. There were 267 splenectomy patients, 49 died in the hospital and 23 after discharge. 267-49-23=195, not 196.
  2. Only 52 of this 195 agreed to participate. You were able to find all 195? It seems that some of these 143 patients just could not be located.
  3. Please clarify the numbers in my last bullet point. Of the 52 patients, only 9 were aware of the revaccination requirement, and only 1 got it?
  4. This is important work. What have you done to improve these numbers at your hospital?

Click here to go the the EAST 2017 page to see comments on other abstracts.

Related posts:

Reference: Revaccination compliance after trauma splenectomy: a call for improvement. Poster #31, EAST 2017.

Print Friendly, PDF & Email

Early Mobilization In Solid Organ Injury

Most trauma centers have some kind of practice guideline for managing solid organ injury. Unfortunately, the specifics at each center are all over the map. Here are a few common questions:

  • Should you keep the patient NPO?
  • How often should Hgb/Hct be repeated?
  • Should they be at bed rest?
  • What are their activity restrictions after they go home?

spleen-lac

As for activity, some earlier studies have shown that early ambulation is safe. The group at Hahnemann University Hospital in Philadelphia tried to determine if early mobilization would decrease time in ICU and/or the hospital, or increase complications.

Until 2011, their trauma service kept all patients with solid organ injury at bed rest for 3 days(!). They modified this routine to allow ambulation the following morning for Grade 1 and 2 injuries, and after 24 hours for Grade 3 and above, or those with hemoperitoneum. They examined their experience for 4 years prior (PRE) and 4 years after (POST) this change. They excluded patients with penetrating injury, or other significant injuries that would impact the length of stay.

Here are the factoids:

  • 300 solid organ injury patients were identified in the PRE period, and all but 89 were excluded
  • 251 were identified in the POST period, and all but 99 were excluded
  • Hospital length of stay was significantly shorter (5.9 vs 3.7 days) after implementation of the new guideline
  • ICU length of stay also decreased significantly, from 4.6 to 1.8 days
  • The authors extrapolated a cost savings of about $40K for the ICU stay, and $10K for the ward stay, per patient
  • There was one treatment failure in each group

Bottom line: It’s about time we recognized what a waste of time these restrictions are! Unfortunately, the study groups became very small after exclusions, but apparently the statistics were still valid. But still, it continues to become clear that there is no magic in keeping someone starving in their bed for any period of time.

At my hospital, we adopted a practice guideline very similar to this one way back in 2004 (download it below). Hospital lengths of stay dropped to about 1.5 days for low grade injury, and to about 2.5 days for high grade.

And earlier this year, we eliminated the NPO and bed rest restrictions altogether! How many patients actually fail and end up going urgently to the OR? So why starve them all? And normal activity started immediately is no different than activity started a few hours or days later.

Don’t starve or hobble your patients, adults or children!

Related posts:

Reference: Early mobilization of patients with non-operative liver and spleen injuries is safe and cost effective. AAST 2016, Poster #5.

Print Friendly, PDF & Email

Platelet Count After Spleen Injury

In most trauma textbooks, the most commonly injured solid organ is the spleen. There is a lot of work available that tells trauma professionals how to detect and manage spleen injuries. However, the treatment of the sequelae is less clear cut. We know that the platelet count generally rises after spleen injury, and especially if it is removed. We think we know that we should be on alert if the platelet count goes over 1 M per microliter (ul) to avoid thrombisis.

What happens during the usual hospital course? Is venous thrombosis actually a problem? A group at St. Michael’s Hospital in Toronto performed a 5 year retrospective review of their patients with splenic injury to try to answer these questions. Children and patients with known pre-existing coagulopathy or that were taking anticoagulants were excluded. All were managed with prophylactic low molecular heparin, although the specific product or protocol were not described.

Here are the factoids:

  • A total of 156 patients were enrolled over 5 years. – This is a relatively low number (31/year). In contrast, here in bustling metropolitan St. Paul we see 80-100 per year.
  • Nonoperative management was performed in 84% of cases, with angio-embolization added in another 8%. The other 8% were taken to OR, where most underwent splenectomy. – This is spot on with national data. However, looking at their injury grade breakdown, it seems like they take out a higher than usual number of low grade spleens.
  • Platelet count rose steadily after admission, peaking at day 16-17.
  • Splenectomy patients had a mean peak platelet count of 890K/ul.
  • Nonop management patients had a mean peak of 604K/ul.
  • Extreme thrombocytosis (counts > 1M/ul) occurred in 25 patients (16%). It occurred in 41% of splenectomy patients, but only 6% of nonop patients.
  • Although DVT and PE occurred in these patients (8%, which seems a bit high), there was no association with thrombocytosis, extreme thrombocytosis, or aspirin use. – This is most likely due to the small size of the study. 

Bottom line: This small study provides some interesting and important information regarding the platelet count trend after splenic injury. Although there was not enough power to look at the association with DVT, PE, and the value of aspirin treatment for extreme thrombocytosis, the platelet count trend info was very interesting. It looks like we should be checking a platelet count about 2-3 weeks after injury to make sure it’s not reaching extreme levels. This can be scheduled during their postop or post-discharge visit. A reminder should also be sent to the primary care physician to be on the lookout for extreme thrombocytosis for the first three weeks post-injury.

Reference: Thrombocytosis in splenic trauma: In-hospital course and association with venous thromboembolism. Injury, in press, 2016.

Print Friendly, PDF & Email