Category Archives: General

Giving Vitamin D After Fracture

The role of Vitamin D in fracture healing is well known. So, of course, trauma professionals have tried to promote Vitamin D

supplementation to counteract the effects of osteoporosis. A meta-analysis of of 12 papers on the topic relating to hip and other non-vertebral fractures showed that there was roughly a 25% risk reduction for any non-vertebral fractures in patients taking 700-800 U of Vitamin D supplements daily.

Sounds good. So what about taking Vitamin D after a fracture occurs? Seems like it should promote healing, right? A very recent meta-analysis that is awaiting publication looked at this very question.

Unfortunately, there was a tremendous variability in the interventions, outcomes, and measures of variance. All the authors could do was summarize individual papers, and a true meta-analysis could not be performed.

Here are the factoids:

  •  81 papers made the cut for final review
  • A whopping 70% of the population with fractures had low Vitamin D levels
  • Vitamin D supplementation in hospital and after discharge did increase serum levels
  • Only one study, a meeting abstract which has still not seen the light of day in a journal, suggested a trend toward less malunions following a single loading dose of Vitamin D

Bottom line: Vitamin D is a great idea for people who are known to have, or are at risk for, osteoporosis and fractures. It definitely toughens up the bones and lowers the risk of fracture. However, the utility of giving it after a fall has not been shown. Of the 81 papers reviewed, none showed a significant impact on fracture healing. The only good thing is that Vitamin D supplements are cheap. Giving them may make us think that we are helping our patient heal, but it’s not. 

Related posts:

References:  

  • What is the role of vitamin D supplementation in acute fracture patients? A systematic review and meta-analysis of the prevalence of hypovitaminosis D and supplementation efficacy. J Orthopaedic Trauma epub Sep 22 2015.
  • Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 293(18):2257-2264, 2005.

Print Friendly, PDF & Email

The ICU Bounce Back

We’ve all experienced it. A seriously injured trauma patient is admitted to the ICU and begins the process of recovery. Everything looks well, and after a few days they are transferred to a ward bed. But then they languish, never really doing what we expect. Finally (and usually in the middle of the night), they begin to look bad enough where we have to transfer them back to the ICU.

What’s the problem here? A failure of the ICU team? Did we all miss something? Is there any way we can avoid this problem? The major issue is that these “bounce backs” tend to do poorly compared to patients who successfully stay in their ward bed. Estimates are that mortality for patients successfully and finally discharged from the ICU range from 4-8%, whereas the mortality in bounce back patients is 20-40%!

Researchers at the Medical University of South Carolina in Charleston looked at the characteristics that defined the bounce back patient. They looked at nearly 2000 patients discharged from the trauma ICU and analyzed the variables that predicted an unplanned bounce back. They noted the following interesting findings:

  • More than two thirds of bounce backs occurred within 3 days
  • Males, patients with an initial GCS < 9, transfer during the day shift, and the presence of comorobidities
  • More comorbidities was associated with a higher chance of bounce back
  • Mortality in the bounce back group was 20%
  • The most common factors causing bounce back were respiratory failure or bleeding

Bottom line: This is an intriguing single-institution study that supports my own personal observations. Fewer bounce backs occur at night because staffing tends to be lower and there is more resistance to transfers out of the ICU to make room. Both the ICU team and the ward team need to scrutinize every transfer carefully. Significant head injury or the presence of medical comorbidities should trigger a careful assessment to make sure that the transfer is appropriate. Otherwise, your patient may be placed in unnecessary jeopardy.

Related posts:

Reference: Intensive care unit bounce back in trauma patients: An analysis of unplanned returns to the intensive care unit. J Trauma 74(6):1528-1533, 2013.

Print Friendly, PDF & Email

The Robert Jones Dressing

The Robert Jones dressing is a thick, padded bandage classically applied to the thigh and leg. It is thought to reduce swelling by applying even pressure to the extremity, which in turn should promote healing. And since it is a soft dressing, as opposed to a cast, there is less chance of developing skin breakdown from direct pressure. Here’s a compression-type dressing described in 1937 using stockinette, cotton wool, and elastic cloth, although it was not attributed to Jones at that point.

Charnley provided a detailed description of the bandage in 1950, and was the first to refer to Jones.

Interestingly, Robert Jones never really referred to the dressing by name. There were references to a “pressure crepe bandage over copious wool dressing” in his operative logs, but it wasn’t until much later that his name became associated with it. Because of this, the composition of the bandage has varied greatly over time.

But who was Robert Jones? We in the States are fairly ignorant, but my UK readers are very familiar. Jones was a British surgeon who practiced through the late 1800s and past the end of World War I. He learned about fractures from his uncle, and became one of the few surgeons of the time to be interested in fracture care. Until then, orthopaedics was focused primarily on correcting deformities in children. He received his FRCS in 1889. After being appointed Surgeon-Superintendent of the Manchester Ship Canal, he established the first comprehensive accident service in the world to take care of injured workers. He founded the British Orthopaedic Society in 1894, and introduced the concept of military orthopaedic hospitals during World War I. His innovations led to significant decreases in morbidity and mortality from fractures in the war, particularly of the femur.

And does his eponymous dressing actually work? There has been little research in this area. There is one study that I have found that actually measured compartment pressures to see if the loss of edema from compression caused a noticeable pressure decrease. Here are the factoids:

  • This was a very small prospective study from 1986 of 9 patients (!) who had just undergone knee arthroplasty
  • Slit catheters were placed into the compartment 10 cm below the knee joint (but they didn’t say which compartment)
  • Thick cotton-wool from a roll was applied over the surgical dressings twice, each with a thickness of two inches. An elastic bandage was then applied snugly.
  • Much to the researchers’ surprise, compartment pressures did not fall as expected over time. They were basically constant until the dressing was removed. Then the pressures fell significantly.

Bottom line: Robert Jones’ fame is well deserved. However, his dressing (which he did not name, and may not even be what he used), did not have the pressure-reducing effect on an injured limb that surgeons thought. No studies on edema and healing have been done. It’s basically a fluffy dressing. However, that is a good thing. It keeps the leg padded, protecting the skin, and immobilized. It’s like a very well padded cast, without the risk of skin breakdown. And because of its simplicity, it will probably be used for quite some time to come.

Related posts:

References:

  • The Robert Jones bandage. JBJS 68B(5):776-779, 1986.
  • The treatment of fracture without plaster of Paris. Closed Treatment of Common Fractures, E&S Livingstone 1950, pg 28-29.
  • Handbook of Orthopaedic Surgery. CV Mosby 1937, pg 418.
Print Friendly, PDF & Email

September Trauma MedEd Newsletter Released This Weekend!

The September Trauma MedEd Newsletter will be released to subscribers this weekend. This month, I’m concentrating on imaging, and specifically image transfer from referring to receiving hospitals. Articles will deal with:

  • Repeat imaging
  • Cloud services
  • Tips on image transfer
  • And more!

Anyone on the subscriber list as of midnight (CST) Saturday will receive it on Sunday. Everybody else will have to wait for me to release it here on the blog late next week. So sign up for early delivery now by clicking here!

Pick up back issues here!

Print Friendly, PDF & Email

ABC: A Quick & Dirty Way to Predict Massive Transfusion

It’s nice to have blood available early when major trauma patients need it. Unfortunately, it’s not very practical to have several units of O neg pulled for every trauma activation, let alone activate a full-blown massive transfusion protocol (MTP). Is there any way to predict which trauma patient might be in need of enough blood to trigger your MTP?

The Mayo Clinic presented a paper at the EAST Annual Meeting a few years ago that looked at several prediction systems and how they fared in predicting the need for massive transfusion. Two of the three systems (TASH – Trauma Associated Severe Hemorrhage, McLaughlin score) are too complicated for practical use. The Assessment of Blood Consumption tool is simple, and it turns out to be quite predictive.

Here’s how it works. Assess 1 point for each of the following:

  • Heart rate > 120
  • Systolic blood pressure < 90
  • FAST positive
  • Penetrating mechanism

A score >=2 is predictive of massive transfusion. In this small series, the sensitivity of ABC was 89% and the specificity was 85%. The overtriage rate was only 13%.

The investigators were satisfied enough with this tool that it is now being used to activate the massive transfusion protocol at the Mayo Clinic. Although the abstract is no longer available online, it appears to be remarkably similar to a paper published in 2009 from Vanderbilt that looks at the exact same scoring systems. Perhaps this is why it never saw print? But the results were the same with a sensitivity of 75% and a specificity of 86%.

Here’s a summary of the number of parameters vs the likelihood the MTP would be activated:

ABC Score         % requiring massive transfusion
0                                1%
1                               10%
2                               41%
3                               48%
4                             100%

Bottom line: ABC is a simple, easy to use and accurate system for activating your massive transfusion protocol, with a low under- and over-triage rate. It doesn’t need any laboratory tests or fancy equations to calculate it. If two or more of the parameters are positive, be prepared to activate your MTP, or at least call for blood!

Related post:

References: 

  • Comparison of massive blood transfusion predictive models: ABC, easy as 1,2,3. Presented at the EAST 24th Annual Scientific Assembly, January 26, 2011, Session I Paper 4. (No longer available online)
  • Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma 66(2):346-52, 2009.

Print Friendly, PDF & Email