Category Archives: General

EAST 2016: (F)utility Of Transfusion In Flight

Air transport of trauma patients has resulted in the creating a mobile intensive care unit in the passenger compartment of the aircraft. Since trauma patients frequently need blood, it was logical to begin stocking blood products on board. Once again, though, it sounds like a good idea. But does it make a difference?

Vanderbilt University carried out a retrospective review of aeromedical transports to its Level I trauma center. The authors chose overall mortality and 24-hour mortality as their endpoints.

Here are the factoids:

  • 5581 patients were entered into the study. This represented all trauma scene transports to this trauma center over 7 years.
  • Only 4% of these patients (231) received blood in the aircraft.
  • Multivariate regression analyses were performed with and without propensity score matching. (Sorry, just had to throw that in there to make your head spin!)
  • There was no significant improvement in 24-hour or overall mortality when blood was given. This was true using all of their statistical methods.

Bottom line: This abstract seems to corroborate a few other studies that show no benefit to prehospital blood administration. So why do we still do it? Because we don’t know the full answer yet. Using mortality alone is a very crude outcome measure. What about early complications, ventilator times, time in the ICU, and other soft measures? More work is needed to slice and dice this appropriately enough to answer the question.

Reference: Blood transfusion: in the air tonight? EAST 2016 Oral abstract #5, resident research competition.

Print Friendly, PDF & Email

EAST 2016: Acetylcysteine (Mucomyst) And Pulmonary Infection

Okay, there’s only one thing I dislike writing about more than an animal study. And that’s writing about a bench research study. First, I don’t even pretend to know enough about most of it to make any real sense of it. But even more importantly, the actual translation into clinical practice is far in the future and frequently never happens. So many times it’s just an academic exercise to get a paper published.

But this is another paper with a startling result that begs rapid follow-up and animal or human study. The use of nebulizers and inhaled aerosols is commonplace in ventilated patients in the typical ICU setting. A recent trial of an inhaled cocktail containing heparin, albuterol, and n-acetylcysteine (mucomyst) unexpectedly resulted in a higher incidence of pneumonia. So which one is the offending ingredient?

Since mucomyst is therapeutically used to change the properties of mucus, a group at Wayne State in Detroit looked at its effect on mucus, cytokine response, and bacterial transcytosis in an in vitro model.

Here are the factoids:

  • Three groups of monolayers of human bronchial epithelial cells were grown and each was treated with either mucomyst, albuterol, or nothing (control). A mucin analysis was carried out.
  • Separately, Klebsiella was added to three groups of monolayers grown as above. Cytokine response and bacterial transcytosis was measured.
  • Mucin and its oligosaccharide content decreased significantly only in the mucomyst group, within 15 minutes of administration.
  • Cytokine response was decreased in the mucomyst group after exposure to Klebsiella. This did not achieve statistical significance but was impressive.
  • Bacterial transcytosis was increased only in the mucomyst + Klebsiella group.

Bottom line: This is startling news that involves a medication we tend to take for granted. Again, animal and/or human studies need to be quickly designed so we can determine whether the use of N-acetylcysteine should be avoided in ventilated patients.

N-acetylcysteine renders airway barrier at risk for bacterial passage and subsequent infection. EAST 2016 Oral abstract #4, resident research competition.

Print Friendly, PDF & Email

EAST 2016: Brain Hypoxia In TBI With Aeromedical Evacuation

I’m sure that most of you have noticed that I very rarely write about animal studies. The problem I have is that the effects generally found are not dramatic, and results seldom carry over to humans the way we think they should. 

But for this paper, I’ve made an exception. It uses a swine model to study the effect of air transport at altitude on TBI. As you may know, most aeromedical transport in the US is via helicopter. 

However, some patients in more rural areas must travel longer distances to get high level trauma care, and may need to fly in fixed wing aircraft. U.S. military transports overseas use fixed wing almost exclusively. 

Medical helicopters typically fly at only 1000-3000 feet above the ground, and the change in air pressure (and hence PaO2) is small. However, fixed wing aircraft fly at much higher altitudes, and the effective cabin altitude may rise to about 8000 feet. This is why your ears “pop” so many times as you ascend. You’ve essentially just climbed Mt. St. Helens in Washington state. The amount of oxygen in cabin air also decreases with altitude.

So what happens to a patient with severe TBI when exposed to these fluctuations in pressure and oxygen levels? A group at the Naval Research Center looked at this issue in anesthetized swine that received a TBI from a percussion device. They received standard TBI and injury-specific care (for pigs?) for two hours, then underwent flight simulation using a hypobaric chamber set to a cabin altitude of 8000 feet for four hours. 

Here are the factoids:

  • Six study pigs underwent the 2 hours at sea level followed by 4 hours at altitude. Six control pigs stayed at sea level after their injury.
  • Mean arterial pressure in the pigs at altitude decreased somewhat, but not significantly.
  • Intracranial pressure (ICP) increased significantly in the TBI group(!)
  • As a result, cerebral perfusion pressure (CPP) dropped in the study group (highly significant result).

Bottom line: Aeromedical transport at typical cabin altitudes significantly increases ICP and decreases CPP in an injured pig model. Although the groups are small, this information is startling and deserves rapid confirmation. This information may have a significant impact on the way we fly patients with head injuries. In particular, this is important for military aeromedical evacuation.

Reference: Brain hypoxia is exacerbated in hypobaria during aeromedical evacuation in swine with TBI. EAST 2016 Oral abstract #2, resident research competition.

Print Friendly, PDF & Email

EAST 2016 Is Coming!

The Eastern Associate for the Surgery of Trauma (EAST) holds its annual scientific assembly every year in January, typically in a nice, warm location. This year is no exception, as it will be taking place in the JW Marriott in San Antonio. 

The program is usually quite varied, and there are always two special sessions that are devoted to prevention and presentations from young researchers. This organization caters to young trauma professionals, and strives to get them involved in its various committees early in their careers. And it provides invaluable networking opportunities in a very informal setting. 

In recent years, the scientific program has been a bit ho-hum. However, I’ve been reviewing this year’s abstract selection and have found quite a few exciting papers. I’m going to share my comments on one interesting abstract a day for the next 2 weeks.

But remember, these analyses are based on reading the abstracts alone. Sometimes the actual work presented varies substantially so I urge you to attend and listen to the talks yourself.

And just for giggles, I’ve included one example on how not to write your abstract. I’ll publish that one next Monday.


Print Friendly, PDF & Email

What’s The Best Pelvic Binder? Part 2

Yesterday, I detailed some pelvic binders commonly available
in the US.
Today, I’ll go through the (little) science there is regarding which are better
than others.

There are a number of factors to consider when choosing one
of these products.
They are:

  • Does it work?
  • Does it hurt or cause skin damage?
  • Is it easy to use?
  • How much does it cost?

It’s difficult to determine how well binders work in the live,
clinical setting. But biomechanical studies can serve as a surrogate to try to answer
this question. One such cadaver study was carried out in the Netherlands a
few years ago. They created one of three different fracture types in pelvis
specimens. Special locator wires were placed initially so they could measure bone movement
before and after binder placement. All three of the previously discussed
commercial binders were used.

Here are the factoids:

  • In fracture patterns that were partially stable or unstable,
    all binders successfully closed the pelvic ring.
  • None of the binders caused adverse displacements of fracture
  • Pulling force to achieve complete reduction was lowest with
    the T-POD (40 Newtons) and highest with the SAM
    pelvic sling (120 Newtons).
    The SAM sling limits compression to 150 Newtons,
    which was more than adequate to close the pelvis.

So what about harm? A healthy volunteer study was used to
test each binder for tissue pressure levels. The 80 volunteers were outfitted
with a pressure sensing mat around their pelvis, and readings were taken with
each binder in place.

Here are the additional factoids:

  • The tissue damage threshold was assumed to be 9.3 kPa
    sustained for more than 2-3 hours based on the 1994 paper cited below.
  • All binders exceeded the tissue damage threshold at the
    greater trochanters and sacrum while lying on a backboard. It was highest with
    the Pelvic Binder and lowest with the SAM sling.
  • Pressures over the trochanters decreased significantly after
    transfer to a hospital bed, but the Pelvic Binder pressures remained at the
    tissue damage level.
  • Pressures over the sacrum far exceeded the tissue damage pressure
    with all binders on a backboard and it remained at or above this level even
    after transfer to a bed. Once again, the Pelvic Binder pressures were higher. The
    other splints had similar pressures.

And finally, the price! Although your results may vary due to
your buying power, the SAM sling is about $50-$70, the Pelvic Binder $140, and
the T-POD $125.

Bottom line: The binder that performed the best (equivalent
biomechanical testing, better tissue pressure profile) was the SAM sling. It also happens to be the least expensive, although it takes a little more elbow grease to apply. In my mind, that’s a winning combo.
Plus, it’s narrow, which allows easy access to the abdomen and groins for
procedures. But remember, whichever one you choose, get them off as soon as
possible to avoid skin complications.

What’s the best pelvic binder? Part 1


  • Comparison of three different pelvic circumferential
    compression devices: a biomechanical cadaver study. JBJS 93:230-240, 2011.
  • Randomised clinical trial comparing pressure characteristics
    of pelvic circumferential compression devices in healthy volunteers. Injury 42:1020-1026,
  • Pressure sores. BMJ 309(6959):853-857, 1994.
Print Friendly, PDF & Email