All posts by The Trauma Pro

Using Mechanism of Injury In Your Trauma Activation Criteria

The Centers for Disease Control and Prevention (CDC) published a set of Guidelines for Field Triage two years ago. Click here to download them. They list 4 tiers of activation criteria to help prehospital providers triage patients appropriately to trauma centers. 

Tier 1, which are physiologic criteria, and Tier 2 (anatomic criteria) are very accurate in predicting injury serious enough to require trauma team activation. Tier 3 contains mechanism criteria, and many centers who use these verbatim in their activation criteria end up with a fair amount of overtriage. Some centers even see a significant number of patients who meet Tier 3 criteria go home from the ED!

The Yale department of Emergency Medicine looked at intrusion into vehicle criteria (more than 12" near an occupant, more than 18" anywhere on the vehicle) to see if they are a valid predictor for admission or trauma center transport. It was a retrospective review of EMS transports to the Yale ED or to one satellite site. 

Unfortunately, the number of vehicles that met intrusion criteria (48) was small compared to the number without significant intrusion (560). This makes the data a little less convincing than it may have been. The likelihood that intrusion would require trauma center admission (Positive Predictive Value) was only 26%. The likelihood that trauma center resources would be utilized (for issues like death, ICU stay, operation, spinal injury or intracranial hemorrhage) was only 13%. The authors recommend that the CDC guidelines be tweaked based on this data.

Bottom line: I think the numbers are far too small to convince the CDC to change their guidelines. But I would urge each trauma center that uses the intrusion criteria for activation to carefully study how many of those patients have minor injuries or go home from the emergency department. They may find that they can rely on other more accurate criteria and decrease their overtriage rate at the same time.

Reference: Motor vehicle intrusion alone does not predict trauma center admission or use of trauma center resources. Prehospital Emerg Care 15:203-207, 2011.

Giving Alcohol To Prevent Alcohol Withdrawal??

Alcohol abuse is a major problem worldwide, and provides trauma professionals with a never-ending stream of patients to take care of. A few of our patients partake so frequently that they are at risk for complications when they are forced to stop (e.g. admitted to the hospital).

In days gone by, one of the possible treatments for alcohol withdrawal was actual administration of ethanol in the hospital, by mouth or sometimes IV (!). For the most part, this has fallen by the wayside. However, I do get questions from readers about it from time to time, and I assume that this still happens at some hospitals. And I know of a few hospitals that still have beer on the formulary!

So what’s the answer? There is enough literature out there to convincingly say that the practice should be abandoned. Here are some factoids for you:

  • Benzodiazepines are now the first-line treatment for withdrawal
  • Benzos have anticonvulsant properties, which ethanol does not
  • Benzos cause less respiratory depression than ethanol when dosed properly
  • Using a CIWA protocol early minimizes over-medication events and can prevent progression to more serious withdrawal
  • Lorazepam is a good choice because its metabolism is minimally affected by liver dysfunction
  • The use of ethanol to treat withdrawal condones alcohol abuse and does not promote behavioral change or treatment

Bottom line: Don’t reach for the bottle when trying to prevent or treat alcohol withdrawal syndrome. Monitor at-risk patients closely, adopt a finely-tuned CIWA protocol (see below), and aggressively refer to treatment after your patient recovers. 

Reference: Ethanol for alcohol withdrawal: end of an era. J Trauma 74(3):925-931, 2013.

Tips For Trauma Pros: Seat Belt Sign

We see seat belt signs at our trauma center with some regularity. There are plenty of papers out there that detail the injuries that occur and the need for a low threshold for surgically exploring these patients. I have not been able to find specific management guidelines, and want to share some tidbits I have learned over the years. Yes, this is based on anecdotal experience, but it’s the best we have right now.

image

Tips for trauma professionals:

  • Common injuries involve the terminal ileum, proximal jejunum, and sigmoid colon. My observation is that location in the car is associated with the injury location, probably because of the location of the seat belt buckle. In the US, drivers buckle on the right, and I’ve seen more terminal ileum and buckethandle injuries in this group. Front seat passengers buckle on the left, and I tend to see proximal jejunum and sigmoid injuries more often in them.
  • Seat belt sign on physical exam requires abdominal CT for evaluation, regardless of age. The high incidence of significant injury mandates this test.
  • Seat belt sign plus any anomaly on CT requires evaluation in the OR. The only exception would be a patient with minimal fluid only in the pelvis with an unremarkable abdominal exam. But I would watch them like a hawk.
  • In patients who cannot be examined clinically (e.g. severe TBI), a rising WBC count or lactate beginning on day 2 after adequate resuscitation should prompt a trip to the OR. This is an indirect method for detecting injured bowel or mesentery.
  • Laparoscopy may be used in patients with equivocal findings. Excessive blood, bile tinged fluid, succus, or lots of fibrin deposits on the bowel should prompt conversion to laparotomy. Tip: place all ports distant to the seat belt mark. The soft tissues are frequently disrupted, and gas may leak into this pocket prohibiting good insufflation of the peritoneal cavity.
  • If in doubt, open the abdomen. It’s bad form to put in the scope, see something odd, and walk away. Remember, any abnormal finding after trauma is related to trauma until proven otherwise. It’s almost never pre-existing disease.

Related posts:

EAST 2015: What If You Don’t Have TEG For Trauma?

The new hot items in trauma care are thromboelastography (TEG) and ROTEM (thromboelastometry), a new spin on TEG from the TEM Corporation. These tools allow for in-depth assessment of factors that influence clotting. We know that rapidly recognizing and treating coagulopathy in major trauma patients can reduce mortality. So many trauma centers are clamoring to buy this technology, citing improved patient care as the reason.

But new technology is always expensive, and isn’t always all it’s cracked up to be. TEG and ROTEM require an expensive machine and a never-ending supply of disposable cartridges for use. Some hospitals are reluctant to provide the funds unless there is a compelling clinical need.

Surgeons at the University of Cincinnati compared the use of TEG with good, old-fashioned point-of-care (POC) INR testing in a series of major trauma patients seen at their Level I center.

Here are the factoids:

  • This was a retrospective review of 628 major trauma patients who received both TEG and POC INR testing using an iSTAT device over a 1.5 year period
  • Median ISS was 13, and there were many sick patients (20% in shock, 21% received blood, 11% died)
  • INR correlated with all TEG values, with better correlation in patients in shock
  • Both INR and TEG correlated well with treatment with blood, plasma, and cryoprecipitate
  • Processing time was 2 minutes for POC INR vs about 30 minutes for TEG
  • Charges for POC INR were $22,000 vs $397,000 for TEG(!!)

Bottom line: Point of care INR testing and TEG both correlate well with the need for blood products in major trauma patients. But POC INR is much cheaper and faster. Granted, the TEG gurus will say that you can tailor the products administered to meet the exact needs of the patient. But in all my travels, I have never visited a center that has fully and effectively incorporated TEG or ROTEM into their massive transfusion protocol. Before you make the financial leap to buy these new toys, make sure that you have a very good clinical reason to do so.

Related posts:

Reference: All the bang without the bucks: defining essential point-of-care testing for traumatic coagulopathy. Presented at EAST 2015, Paper 30.

EAST 2015: Keeping An ICU Bed Open For Trauma

Many busy trauma hospitals have equally busy trauma ICUs. Frequently, trauma patients who need critical care are backed up in the emergency department (ED) while awaiting a bed in such cases. This slows ED throughput for other patients, and increases the possibility of an adverse event while waiting for the ICU bed.

The group at the University of Kentucky in Lexington will present an abstract examining the impact of keeping an open bed in the ICU, as well as having a charge nurse in that unit without a patient assignment to help manage bed availability and staffing.

Here are the factoids:

  • The study examined highest level trauma activations in the ED requiring ICU admission before implementation of the open bed policy
  • 303 patients pre-implementation were compared to 261 patients  post-implementation
  • The usual demographics were similar for both groups
  • Time in the ED decreased from 4:17 to 2:34 after the open bed policy was instituted, which was highly significant
  • ICU length of stay (LOS) for patients who were admitted after the policy was in place decreased despite an increase in ISS, but not significantly so
  • There was no change in mortality
  • There was a cost savings of about $1000 per patient due to increased nursing productivity and the decreased LOS

Bottom line: Making the effort to reserve a bed for an incoming trauma patient at all times seems to be well worth it. I have visited many hospitals with incredible logjams of these patients in the ED. Frequently, this has a disproportionate and negative impact on the throughput of other ED patients. Creating such a policy should serve to improve patient flow (and satisfaction: what family wants to spend hours sitting in the ED?) as well save money.

Related posts:

Reference: Maintaining an open ICU be for rapid access to the trauma intensive care unit is cost effective. Presented at EAST 2015, paper 28.