Serial Lab Testing: Worthwhile or Worthless?: Final Answer

In my last two posts, I detailed the serum sodium measurements in a hypothetical patient two ways. The first was a listing of daily values, and the second provided values obtained every six hours or so. It also showed the sodium supplementation that was ordered based on those values. (I’ve included the table at the bottom of this post)

What did you think? Did the extra determinations help you decide what, if any, treatment was needed? Did the therapies ordered help?

Here are my thoughts:

  • Overall, there was not a huge or rapid decline in sodium values. Given the initial values, I would not have started a saline infusion on day 1, just watched a few daily values and the patients physical exam. The infusion only provided 3gm of salt per day, and the serum Na remained fairly stable for the first 3 days.
  • There was a significant amount of intra-day variation seen on the six hour table. You need to know the normal “within-person ” variation for any lab test you order. If two assays on specimens drawn at the same time can vary by 5%, you must factor this in to your decision making. If the value is 3% lower than the previous draw, the difference could represent normal variation. Obtaining more frequent assays exacerbates the amount of variation you see and my be confusing.
  • From day 5 to 6, the sodium appeared to be rising without any salt supplementation! But then a higher dose was given, and one of the intra-day values dropped to 124. What’s up with that? More variation?!
  • Is the morbidity of frequent blood draws worth it if there is no clinical change in the patient’s exam? What morbidity, you ask? Sleep disturbances, with all the cascading problems like delirium, sundowning, administration of additional meds to compensate, and on and on. Unnecessary medication or interventions. Plus it does not promote patient or family satisfaction at all.

Bottom line: Unless your patient has a clinical problem that may deteriorate rapidly, serial lab determinations are probably not of much value. The example patient was many days out from a TBI with some extra-axial blood. So yes, he could develop hyponatremia, but it would have probably surfaced earlier. Know your within-person  variability, which for sodium is roughly +2 meq. Is your new value within that limit? Then it is statistically the same as the first value unless you see a trend over several measurements. And as always, if you note a marked change in just one value, repeat it immediately before beginning any more drastic interventions.

Reference: Biological variation of laboratory analytes based on the 1999-2002 national health and nutrition examination survey. Natl Health Statistic Reports 21:March 1, 2010.

Day/Time Na Treatment NaCl per day
Day 1 18:30 131
Day 1 22:54 132 0.9% NS @ 125/hr 3G
Day 2 05:59 133 continues 3G
Day 2 12:19 129 continues
Day 2 17:50 129 continues
Day 3 07:18 127 continues
Day 3 12:09 127 continues
Day 3 17:58 126 continues
Day 3 23:53 126 continues
Day 4 07:45 125 continues
Day 4 11:38 122 2% NS @ 25/hr 6G
Day 4 15:25 125 continues
Day 4 19:31 125 continues
Day 5 00:06 122 continues 6G
Day 5 04:04 126 continues
Day 5 08:01 122 continues
Day 5 11:50 132 stop
Day 5 16:14 126
Day 5 19:26 127
Day 6 00:20 129 9.2G
Day 6 04:42 127 2% NS @ 40/hr
Day 6 08:30 124 continues
Day 6 12:29 127 stop
Day 6 16:16 127 Salt tabs 2G tid
Day 6 20:28 132 continues
Day 7 05:22 134 Salt tabs 2G qid 8G
Day 7 12:33 135 continues
Day 8 07:02 131 stop None
Day 8 13:33 136

Serial Lab Testing: Worthwhile or Worthless? Part 2

Yesterday, I posted a series of sodium levels that were drawn daily. There was no change in clinical status as the levels varied from 131 to 125 and back up.

Now let me give you a bit more information. The patient was actually getting serial checks every 6 hours (or more)! Here’s the updated chart:

Day/Time Na Treatment NaCl per day
Day 1 18:30 131
Day 1 22:54 132 0.9% NS @ 125/hr 3G
Day 2 05:59 133 continues 3G
Day 2 12:19 129 continues
Day 2 17:50 129 continues
Day 3 07:18 127 continues
Day 3 12:09 127 continues
Day 3 17:58 126 continues
Day 3 23:53 126 continues
Day 4 07:45 125 continues
Day 4 11:38 122 2% NS @ 25/hr 6G
Day 4 15:25 125 continues
Day 4 19:31 125 continues
Day 5 00:06 122 continues 6G
Day 5 04:04 126 continues
Day 5 08:01 122 continues
Day 5 11:50 132 stop
Day 5 16:14 126
Day 5 19:26 127
Day 6 00:20 129 9.2G
Day 6 04:42 127 2% NS @ 40/hr
Day 6 08:30 124 continues
Day 6 12:29 127 stop
Day 6 16:16 127 Salt tabs 2G tid
Day 6 20:28 132 continues
Day 7 05:22 134 Salt tabs 2G qid 8G
Day 7 12:33 135 continues
Day 8 07:02 131 stop None
Day 8 13:33 136

Confused? Me, too! This poor person had 30 blood draws in 8 days, with 6 per day for two of those days. Carefully look at the amount of salt given in each 24 hour period, and look at the sodium levels for that day.

See the variability, even when getting high doses of sodium chloride? What does this tell you? Was the salt administration helpful? Was seeing the lab value every 4-6 hours valuable?

Tell me what you think. Leave comments or tweet your opinions. Next, I’ll discuss the known variability of the serum sodium assay, and give you my opinion on the value of serial testing.

Serial Lab Testing: Worthwhile or Worthless?

We’ve all done it at some point. Serial hemoglobin. Serial sodium. Serial serum porcelain levels. What does serial mean to you? And what does it tell us about or patient?

Today and tomorrow, I’d like to present an example from real life. For today, have a look at the daily sodium tests done for a patient with a head injury. The concern was for cerebral salt wasting, which is probably grounds for its own blog post.

So have a look at this series of sodium determinations. It represents serial values based on daily testing.

Day/time Na
Day 1 18:30 131
Day 2 05:59 133
Day 3 07:18 127
Day 4 07:45 125
Day 5 04:04 126
Day 6 04:42 127
Day 7 05:22 134

At what point, if any, would you be concerned with significant hyponatremia, and begin some type of supplementation?

Tomorrow, I’ll provide a little more info on levels and treatment

Pneumomediastinum After Falling Down

Finding pneumomediastinum on a chest xray or CT scan always gets one’s attention. However, seeing this condition after a simple fall from standing is very simple to evaluate and manage.

There are 3 potential sources of gas in the mediastinum after trauma:

  • Esophagus
  • Trachea
  • Smaller airways / lung parenchyma

Blunt injury to the esophagus is extremely rare, and probably nonexistent after just falling down. Likewise, a tracheal injury from falling over is unheard of. Both of these injuries are far more common with penetrating trauma.

This leaves the lung and smaller airways within it to consider. They are, by far, the most common sources of pneumomediastinum. The most common pattern is that this injury causes a small pneumothorax, which dissects into the mediastinum over time. On occasion, the leak tracks along the visceral pleura and moves directly to the mediastinum.

Management is simple: a repeat chest xray after 6 hours is needed to show non-progression of any pneumothorax, occult or obvious. This image will usually show that the mediastinal air is diminishing as well. There is no need for the patient to be kept NPO or in bed. Monitor any subjective complaints and if all progresses as expected, they can be discharged after a very brief stay.

Tomorrow: A more interesting (and complicated) case of pneumomediastinum.

But The Radiologist Made Me Do It!

The radiologist made me order that (unnecessary) test! I’ve heard this excuse many, many times. Do these phrases look familiar?

  1. … recommend clinical correlation
  2. … correlation with CT may be of value
  3. … recommend delayed CT imaging through the area
  4. … may represent thymus vs thoracic aortic injury (in a 2 year old who fell down stairs)
Some trauma professionals will read the radiology report and then immediately order more xrays. Others will critically look at the report, the patient’s clinical status and mechanism of injury, and then decide they are not necessary. I am firmly in the latter camp.
But why do some just follow the rad’s suggestions? I believe there are two major camps:
  • Those that are afraid of being sued if they don’t do everything suggested, because they’ve done everything and shouldn’t miss the diagnosis
  • Those that don’t completely understand what is known about trauma mechanisms and injury and think the radiologist does
Bottom line: The radiologist is your consultant. While they are good at reading images, they do not know the nuances of trauma. Plus, they didn’t get to see the patient so they don’t have the full context for their read. First, talk to the rad so they know what happened to the patient and what you are looking for. Then critically look at their read. If the mechanism doesn’t support the diagnosis, or they are requesting unusual or unneeded studies, don’t get them! Just document your rationale clearly in the record. This provides best patient care, and minimizes the potential complications (and radiation exposure) from unnecessary tests.
Related post:

Reference: Pitfalls of the vague radiology report. AJR 174(6):1511-1518, 2000.