What’s Wrong With My Patient? Part 2

In my previous post, I described a young man who had recovered from a stab to the heart. He did well for a week and a half, but then presented to the ED with significant chest pain. It seems to be substernal and somewhat pleuritic. What should you do to work it up further?

There have been a number of helpful comments. The first order of business is to rule out problems which may prove to be life threatening. In his case, ischemic disease and some failure of the repair must be ruled out quickly. Although ischemia or MI are unlikely in this young man, they are possible and should be evaluated.

I recommend the following:

  • Auscultate the chest and heart (remember this from medical school?)
  • PA chest x-ray
  • EKG
  • CBC
  • Troponin
  • FAST exam focusing on the heart

My list is short and simple, and should help me figure out nearly all significant problems.

In this case, the following findings are present:

  • The lungs are clear, and their is a faint cardiac friction rub
  • The chest x-ray is unremarkable
  • EKG shows ST elevations in two of the lateral leads only. Otherwise, it is normal.
  • CBC is normal with the exception of WBC 14,000
  • There is a trace level of troponin present
  • FAST demonstrates a very small pericardial effusion without clot

So what do you make of all this? What’s the diagnosis? What do you need to do? Tweets and comments please.

Answers Monday!

What’s Wrong With My Patient?

I’ve had several requests for this case recently, so I figured I’d put it out there again.

A 25 year old man is involved in some sort of violent, non-productive interpersonal relationship. He sustains a stab to the left chest, and is brought to your trauma center as a trauma team activation. During the FAST exam, a moderate effusion with visible clot is seen in the pericardium.

Appropriately, you run to the OR and prepare for a left thoracotomy. You perform a pledgeted repair of the ventricle (black arrow) and close.

The patient does well and is discharged home five days later. He returns to your clinic the following week and is doing well. You remove the staples.

One week later, he returns to your emergency department complaining of significant chest pain. He describes it as deep, behind his sternum, and it seems to be exacerbated by breathing.

Now what? What are you thinking about? What additional exam do you need. What labs?

Tweet or comment with your answers and suggestions. More on this tomorrow!

Could There Be A Simpler GCS?

The Glasgow Coma Scale (GCS) has been around forever. Or really, for about 45 years. It was actually developed in the early 1970s and known as the Coma Index. It was further refined into the GCS, when 1 was selected as the minimum component score. Ever since, it has been used as a common language among clinicians to communicate gross neurologic function and trends.

But it is still somewhat complicated. Oh no it’s not, you say? Then why do so many trauma resuscitation rooms have it posted on the wall? There are three components, each with a different number of possible values. And frankly, some are harder to remember than others. Decerebrate vs decorticate, right?

So what if someone told you that a single GCS component works just about as well as the whole bunch? Researchers have been piecing this together for years, focusing on the motor component of GCS (mGCS). There are two flavors of simplified score: mGCS and Simplified Motor Score (SMS). The mGCS is just what it sounds like: the full motor component of GCS, ranging from 1-6. The SMS is further simplified from the mGCS: mGCS of 1-4 tranlsates to SMS 0, mGCS 5 = SMS 1, and mGCS 6 = SMS 2. In my opinion, this is actually more complicated because you have to remember not only the 6 mGCS levels, but also the cutoffs to convert it to SMS.

Finally, a group from Oregon Health Sciences University in Portland performed a nice meta-analysis of the best individual studies.

Here are the factoids:

  • Only papers that compared total GCS (tGCS) to mGCS or SMS were included, and only if they analyzed a receiving operator characteristic curve. The statistics appeared sound.
  • tGCS was very slightly better than either mGCS or SMS at predicting:
    • in-hospital mortality
    • neurosurgical intervention
    • emergency intubation
    • severe TBI

Bottom line: Overall, the total GCS is slightly (just a few percent) better at doing the things listed above, compared to the motor score alone or the “simplified” (really?) motor score. Is this clinically significant in the field? Probably not. And its mere simplicity makes it appealing. 

However, there is one major problem to adopting the mGCS for use outside the hospital. Inertia. As I mentioned, we have been using the full GCS score for almost 50 years. Pretty much every trauma professional is familiar with the GCS or knows where to look up the details. But I suspect that those clincicians who assume care of the patient once in the hospital, and especially the intensive care unit (neurosurgeons) will never allow the use of an abbreviated scale. Good idea, but sorry, it won’t catch on in the real world.

May Trauma MedEd Is Coming Soon!

I’m going to send out the next edition of the Trauma MedEd newsletter on May Day! This issue is dedicated to hospitals that transfer trauma patients to upstream trauma centers. It will be full of tips on how to make the decision, and how to send them safely.

Here are some of the topics:

  • Predicting patients that require transfer. Is it possible to do it sooner?
  • Imaging issues. To scan or not to scan, that is always the question.
  • Value of the RTTD Course.
  • The Checklist. Make sure you get all the essentials done before you send.
  • And a few other tidbits…

As always, this issue will go to all of my subscribers first. If you are not yet one of them, click this link to sign up and/or download back issues.

Unfortunately, non-subscribers will have to wait until I release the issue on this blog, about 10 days later. So sign up now!

Geriatric Outcome Prediction From The P.A.L.LI.A.T.E Consortium

The continuing rise in geriatric trauma cases seen at trauma centers has necessitated the creation of new infrastructure for evaluating, treating, and assessing outcomes in injured elders. The ability to predict the likely outcome after trauma is extremely important in shaping the management of these patients after discussion with them and their families. Unfortunately, the tools we have for those prognostications are rather complicated, yet rudimentary.

The gold standard to date is TRISS, which combines physiologic data (revised Trauma Score) at the time of first encounter with anatomic injury information (Injury Severity Score). This allows the calculation of a validated probability of survival (Ps).

However, TRISS is unwieldy and frequently cannot be calculated due to missing data. A consortium was created to address these shortcomings. Of course, they chose a name with an unwieldy acronym: Prognostic Assessment of Life and LImitations After Trauma in the Elderly (PALLIATE).

This group developed the Geriatric Trauma Outcome Score (GTOS) in 2015. They recently published a study comparing GTOS with the gold standard TRISS. This could be important since GTOS is easier to calculate, with less opportunity for missing data since it relies only on age, ISS, and presence of blood transfusion.

They calculated outcomes of nearly 11,000 patients at three centers, and found that GTOS worked as well as TRISS. The major advantage was that GTOS requires only three variables:

GTOS = Age + (ISS x 2.5) + (22 if blood transfused in first 24 hours)

Then, just to make your head spin a little more, the GTO score value gets plugged into this logistic model equation:

Bottom line: GTOS is helpful in some ways, but not in others. It does allow calculation of the probability of survival in elderly patients as well as traditional methods, but with more readily available data points. 

However, it is just a probability. It may predict that someone like your patient has a 3% probability of survival, but it cannot tell specifically that your patient is in the 3% vs the 97%. The consortium was trying to make it easier and more objective for clinicians to discuss care plans with family. But this is not really the case. 

And a bigger problem is that it gives us no guidance as to quality of life or level of independence for those patients who will probably survive. These factors are, by far, the most important ones when having those hard discussion with patient and/or family. We still need a tool that will guide us on functional outcomes, not just life or death.

Related posts:

Reference: A comparison of prognosis calculators for geriatric trauma: A P.A.L.LI.A.T.E. consortium study. J Trauma, publish ahead of print DOI: 10.109, 2017.